
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Android-based implementation of
Eulerian Video Magnification for vital

signs monitoring

Pedro Boloto Chambino

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Prof. Luís Teixeira

Supervisor at Fraunhofer Portugal: Luís Rosado

July 18, 2013

Android-based implementation of Eulerian Video
Magnification for vital signs monitoring

Pedro Boloto Chambino

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Jorge Alves da Silva

External Examiner: Prof. João Miguel da Costa Magalhães

Supervisor: Prof. Luís Filipe Pinto de Almeida Teixeira

July 18, 2013

Abstract

Eulerian Video Magnification is a recently presented method capable of revealing temporal varia-
tions in videos that are impossible to see with the naked eye. Using this method, it is possible to
visualize the flow of blood as it fills the face. From its result, a person’s heart rate is possible to be
extracted.

This research work was developed at Fraunhofer Portugal and its goal is to test the feasibility
of the implementation of the Eulerian Video Magnification method on smartphones by develop-
ing an Android application for monitoring vital signs based on the Eulerian Video Magnification
method.

There has been some successful effort on the assessment of vital signs, such as, heart rate, and
breathing rate, in a contact-free way using a webcamera and even a smartphone. However, since
the Eulerian Video Magnification method was recently proposed, its implementation has not been
tested in smartphones yet.Thus, the Eulerian Video Magnification method performance for color
amplification was optimized in order to execute on an Android device at a reasonable speed.

The Android application implemented includes features, such as, detection of a person’s car-
diac pulse, dealing with artifacts’ motion, and real-time display of the magnified blood flow. Then,
the application measurements were evaluated through tests with several individuals and compared
to the ones detected by the ViTrox application and to the readings of a sphygmomanometer.

i

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Contributions . 3
1.5 Outline . 3

2 State of the art 5
2.1 Photo-plethysmography . 5
2.2 Signal post-processing . 6

2.2.1 Independent Component Analysis . 6
2.2.2 Eulerian Video Magnification . 7
2.2.3 Detrending . 9

2.3 Heart rate estimation . 10
2.3.1 Power spectrum . 10
2.3.2 Pulse wave detection . 11

2.4 Technologies . 12
2.4.1 Android SDK . 12
2.4.2 OpenCV – Computer Vision Library . 13

2.5 Summary . 13

3 Pulse: vital signs monitoring application 15
3.1 Problem description . 15

3.1.1 Android-based implementation of Eulerian Video Magnification 15
3.1.2 Vital signs monitoring . 16

3.2 Implementation details . 16
3.2.1 Overview . 17
3.2.2 Eulerian Video Magnification implementations 17
3.2.3 Face detection . 21
3.2.4 Signal validation . 22
3.2.5 Heart rate estimation . 23
3.2.6 Android integration . 23

3.3 Pulse: Android application . 25
3.4 Summary . 25

4 Results 27
4.1 Performance . 27
4.2 Heart rate estimation comparison . 31

iii

CONTENTS

4.3 Summary . 32

5 Conclusions 35
5.1 Objective satisfaction . 35
5.2 Future work . 36

A Performance metrics 39

References 51

iv

List of Figures

2.1 Overview of the Eulerian Video Magnification method. (source: [WRS+12]) . . 7
2.2 Examples of temporal filters. (source: [WRS+12]) 8
2.3 Emphasis of face color changes using the Eulerian Video Magnification method.

(source: [WRS+12]) . 9
2.4 Original RR series and fitted trends (above) and detrended series without magni-

tude distortion (below). (source: [TRaK02]) . 10

3.1 Overview of the implemented algorithm to obtain the heart rate of a person from
a webcam or video using the Eulerian Video Magnification method. 16

3.2 Overview of the Eulerian Video Magnification method steps. 18
3.3 Overview of image deconstruction and reconstruction for building a Laplacian

pyramid. 20
3.4 Overview of the interaction between the implemented Android application and

library. 24
3.5 User interface of the implemented Android application, Pulse. 24

4.1 A summary of the performance optimizations milestones. The first legend item
is the implementation of the overall algorithm described in section 3.2.1. The
second is the implementation of the Eulerian Video Magnification described in
section 3.2.2.4. The rest are operations that belong to these two functions that
were optimized. The transition from 20-Mar to 26-Mar shows the improvement
by replacing the pyramid construction and deconstruction operations by single
resize operations and simpler interpolation methods for the resize operations. The
transition to 3-Apr is the restriction of the face detection operation to once a second
instead of every frame. And the final transition, 23-May, is the removal of the last
two resize operations by taking advantage of the improvement from 20-Mar to
26-Mar which removes the requirement of the input matrix for the Eulerian Video
Magnification method to be always of the same size. 30

4.2 Bland-Altman plots demonstrating the agreement between the heart rate measure-
ments obtained from a sphygmomanometer and an Android application: either
Pulse, (a), (c), (d), which is the developed application, or the ViTrox application,
(b). 34

v

LIST OF FIGURES

vi

List of Tables

4.1 Performance metrics obtained form the initial implementation of the C/C++ ver-
sion of the desktop application. Excerpt from A.1. 28

4.2 Operations taking more CPU cycles on the initial implementation of the C/C++
version of the desktop application when performance profiling was added. Excerpt
from A.1. 29

4.3 Performance improvement on resize operations by using faster interpolations meth-
ods. Excerpt from A.2. 29

4.4 Performance improvement on face detection by reducing the number of times the
OpenCV object detector was executed. Excerpt from A.3. 29

4.5 Final performance metrics of the main functions. Excerpt from A.4. 30
4.6 Heart rate measurements obtained following the procedure described from a sphyg-

momanometer and an Android application: either Pulse, (a), (c), (d), which is the
developed application, or the ViTrox application, (b). 33

A.1 Initial performance metrics. 40
A.2 Performance metrics using faster resize operations. 42
A.3 Performance metrics when face detection was executed every 10 frames instead of

every frame. 44
A.4 Performance metrics with no resize face box and resize and draw face box back

to frame operations since the EvmGdownIIR implementation always resizes to a
predefined size. 47

vii

LIST OF TABLES

viii

Abbreviations

EVM Eulerian Video Magnification
ICA Independent Component Analysis
PPG Photo-plethysmography
FFT Fast Fourier transform
FPS Frames per Second
JNI Java Native Interface
JVM Java Virtual Machine
OpenCV Open Source Computer Vision Library
IIR Infinite Impulse Response
SD Standard Deviation
ROI Region of Interest

ix

Chapter 1

Introduction

This chapter introduces this dissertation, by first presenting its context, motivation, and project’s

objectives, on sections 1.1, 1.2, and 1.3, respectively.

Finally, section 1.5 describes the document outline.

1.1 Context

Eulerian Video Magnification is a method, recently presented at SIGGRAPH1 2012, capable of

revealing temporal variations in videos that are impossible to see with the naked eye. Using this

method, it is possible to visualize the flow of blood as it fills the face [WRS+12]. And to assess

the heart rate in a contact-free way using a camera [WRS+12, PMP10, PMP11].

The main field of this research work is image processing and computer vision, whose main

purpose is to translate dimensional data from the real world in the form of images into numerical

or symbolical information.

Other fields include medical applications, software development for mobile devices, digital

signal processing.

This research work was developed at Fraunhofer Portugal2 with the supervision of Luís Rosado.

Fraunhofer Portugal is a non-profit private association founded by Fraunhofer-Gesellschaft3 [Por13]

and

“aims on the creation of scientific knowledge capable of generating added value to

its clients and partners, exploring technology innovations oriented towards economic

growth, the social well-being and the improvement of the quality of life of its end-

users.” [Por13]

1http://www.siggraph.org/
2http://www.fraunhofer.pt/
3http://www.fraunhofer.de/en/about-fraunhofer/

1

http://www.siggraph.org/
http://www.fraunhofer.pt/
http://www.fraunhofer.de/en/about-fraunhofer/

Introduction

1.2 Motivation

There has been some successful effort on the assessment of vital signs, such as, heart rate, and

breathing rate, in a contact-free way using a webcamera [WRS+12, PMP10, PMP11], and even a

smartphone [Tec13, Phi13].

Other similar products, which require specialist hardware and are thus expensive, include laser

Doppler [UT93], microwave Doppler radar [Gre97], and thermal imaging [GSMP07].

Since it is a cheaper method of assessing vital signs in a contact-free way than the above

products, this research work has potential for advancing fields, such as, telemedicine, personal

health-care, and ambient assisting living.

Despite the existence of very similar products by Philips [Phi13] and ViTrox Technologies [Tec13]

to the one proposed on this research work, none of these implement the Eulerian Video Magnifi-

cation method.

Due to being recently proposed, the Eulerian Video Magnification method implementation has

not been tested in smartphones yet.

1.3 Objectives

In this work, an Android application for monitoring vital signs based on the Eulerian Video Mag-

nification method will be developed, which should include the following features:

• heart rate detection and assessment based on the Eulerian Video Magnification method;

• display real-time changes, such as, the magnified blood flow, obtained from the Eulerian

Video Magnification method;

• deal with artifacts’ motion, due to, person and/or smartphone movement.

In order to accomplish that, the feasibility of the Eulerian Video Magnification method on

smartphones has to be tested.

It should be noted that a straightforward implementation of the Eulerian Video Magnification

method is not possible, due to various reasons. First, the Eulerian Video Magnification method

provides motion magnification along with color magnification which will introduce several prob-

lems with artifacts’ motion. Second, the requirement of implementing a real-time smartphone

application will create performance issues which will have to be addressed and trade-offs will

have to be considered.

The application performance should then be evaluated through tests with several individuals

and the assessed heart rate compared to the ones detected by another application [Tec13, Phi13],

and to the measurement of an electronic sphygmomanometer.

2

Introduction

1.4 Contributions

The work of this thesis contributes to the current state of the art by testing the feasibility of imple-

menting a performance optimized version of the Eulerian Video Magnification method for color

amplification in order to be capable of being used on a smartphone at a reasonable frame rate.

In addition, it also tests the usage of such method in the assessment of a person’s heart rate

using the smartphone’s camera. This shows that the method is ready to be used on mobile devices

and that it can start being used in other kinds of applications.

1.5 Outline

The rest of the document is structured as follows:

Chapter 2 introduces the concepts necessary to understand the presented problem. In addition, it

presents the existing related work, and a description of the main technologies used.

Chapter 3 provides a detailed description of the problem addressed, defining its scope. And

describes the implementation details of the work developed in order to create an Android

application, named Pulse, for estimating a person’s heart rate based on the Eulerian Video

Magnification method.

Chapter 4 reports and analyses the results from the application performance and heart rate com-

parison.

Chapter 5 finalizes this document by presenting the conclusions of this project, along with pos-

sible further developments and future work.

3

Introduction

4

Chapter 2

State of the art

This chapter focus on the heart rate estimation from a person’s face captured through a simple

webcam.

Section 2.1 describes the concept that explains how the cardiac pulse is detected from a per-

son’s face in a remote, contact-free way.

Post-processing methods, which may be applied to the retrieved signal, are detailed on sec-

tion 2.2.

In order to estimate the heart rate, some techniques are also detailed on section 2.3.

Finally, section 2.4 reviews the main technologies and tools used throughout this work.

2.1 Photo-plethysmography

Photo-plethysmography (PPG) is the concept of measuring volumetric changes of an organ opti-

cally. Its most established use is in pulse oximeters.

PPG is based on the principle that blood absorbs more light than surrounding tissue thus vari-

ations on blood volume affect light reflectance [VSN08].

The use of dedicated light sources and infra-red wavelengths, and contact probes has been the

norm [UT93, Gre97, GSMP07]. However, recently, remote, non-contact PPG imaging has been

explored [WMVdS05, HZCS08].

The method used on the article [VSN08] captures the pixel values (red, green, and blue chan-

nels) of the facial area of a previously recorded video where volunteers were asked to minimize

movements. The pixel values within a region of interest (ROI) were then averaged for each frame.

This spatial averaging was found to significantly increase signal-to-noise ratio. The heart rate es-

timation was then calculated by applying the Fast Fourier transform and the power spectrum as

explained on section 2.3.1.

The authors of [VSN08] demonstrate that the green channel features a stronger cardiac signal

as compared to the red and blue channels. This is a strong evidence that the signal is due to

5

State of the art

variations in the blood volume, because hemoglobin absorbs green light better than red and blue

light.

2.2 Signal post-processing

After obtaining the raw pixel values (red, green, and blue channels), a combination of the following

methods may be used to extract and improve the reflected plethysmography signal. However, each

method introduces complexity and expensive computation.

2.2.1 Independent Component Analysis

Independent Component Analysis is a special case of blind source separation and is a technique

for uncovering independent signals from a set of observations that are composed of linear mixtures

of the underlying sources [Com94].

In this case, the underlying source signal of interest is the cardiac pulse that propagates

throughout the body, which modifies the path length of the incident ambient light due to volu-

metric changes in the facial blood vessels during the cardiac cycle, such that subsequent changes

in amount of reflected light indicate the timing of cardiovascular events.

By recording a video of the facial region, the red, green, and blue (RGB) color sensors pick up

a mixture of the reflected plethysmographic signal along with other sources of fluctuations in light

due to artifacts. Each color sensor records a mixture of the original source signals with slightly

different weights. These observed signals from the red, green and blue color sensors are denoted

by x1(t), x2(t) and x3(t) respectively, which are amplitudes of the recorded signals at time point

t. In conventional Independent Component Analysis model the number of recoverable sources

cannot exceed the number of observations, thus three underlying source signals were assumed,

represented by s1(t), s2(t) and s3(t). The Independent Component Analysis model assumes that

the observed signals are linear mixtures of the sources, i.e. xi(t) = ∑
3
j=1 ai js j(t) for each i = 1,2,3.

This can be represented compactly by the mixing equation

x(t) = As(t) (2.1)

where the column vectors x(t) = [x1(t),x2(t),x3(t)]T , s(t) = [s1(t),s2(t),s3(t)]T and the square

3×3 matrix A contains the mixture coefficients ai j. The aim of Independent Component Analysis

model is to find a separating or demixing matrix W that is an approximation of the inverse of the

original mixing matrix A whose output

ŝ(t) =Wx(t) (2.2)

is an estimate of the vector s(t) containing the underlying source signals. To uncover the

independent sources, W must maximize the non-Gaussianity of each source. In practice, it-

erative methods are used to maximize or minimize a given cost function that measures non-

Gaussianity [PMP10, PMP11].

6

State of the art

Sp
at

ia
l

D
ec

om
po

si
tio

n

Input video

Temporal
Processing
(pixel-wise) ɲ1

ɲ2

ɲnͲ1

R
ec

on
st

ru
ct

io
n

Eulerian video magnification Output video

ɲn

Ȉ

Ȉ

Ȉ

Ȉtime

y

time

y

ٔ

Figure 2: Overview of the Eulerian video magnification framework. The system first decomposes the input video sequence into different
spatial frequency bands, and applies the same temporal filter to all bands. The filtered spatial bands are then amplified by a given factor ↵,
added back to the original signal, and collapsed to generate the output video. The choice of temporal filter and amplification factors can be
tuned to support different applications. For example, we use the system to reveal unseen motions of a Digital SLR camera, caused by the
flipping mirror during a photo burst (camera; full sequences are available in the supplemental video).

on accurate motion estimation, which is computationally expensive
and difficult to make artifact-free, especially at regions of occlusion
boundaries and complicated motions. Moreover, Liu et al. [2005]
have shown that additional techniques, including motion segmen-
tation and image in-painting, are required to produce good quality
synthesis. This increases the complexity of the algorithm further.

In contrast, we are inspired by the Eulerian perspective, where
properties of a voxel of fluid, such as pressure and velocity, evolve
over time. In our case, we study and amplify the variation of pixel
values over time, in a spatially-multiscale manner. In our Eulerian
approach to motion magnification, we do not explicitly estimate
motion, but rather exaggerate motion by amplifying temporal color
changes at fixed positions. We rely on the same differential approx-
imations that form the basis of optical flow algorithms [Lucas and
Kanade 1981; Horn and Schunck 1981].

Temporal processing has been used previously to extract invisible
signals [Poh et al. 2010] and to smooth motions [Fuchs et al. 2010].
For example, Poh et al. [2010] extract a heart rate from a video of a
face based on the temporal variation of the skin color, which is nor-
mally invisible to the human eye. They focus on extracting a single
number, whereas we use localized spatial pooling and bandpass fil-
tering to extract and reveal visually the signal corresponding to the
pulse. This primal domain analysis allows us to amplify and visu-
alize the pulse signal at each location on the face. This has impor-
tant potential monitoring and diagnostic applications to medicine,
where, for example, the asymmetry in facial blood flow can be a
symptom of arterial problems.

Fuchs et al. [2010] use per-pixel temporal filters to dampen tempo-
ral aliasing of motion in videos. They also discuss the high-pass
filtering of motion, but mostly for non-photorealistic effects and for
large motions (Figure 11 in their paper). In contrast, our method
strives to make imperceptible motions visible using a multiscale
approach. We analyze our method theoretically and show that it
applies only for small motions.

In this paper, we make several contributions. First, we demon-
strate that nearly invisible changes in a dynamic environment can be
revealed through Eulerian spatio-temporal processing of standard
monocular video sequences. Moreover, for a range of amplification
values that is suitable for various applications, explicit motion es-
timation is not required to amplify motion in natural videos. Our

approach is robust and runs in real time. Second, we provide an
analysis of the link between temporal filtering and spatial motion
and show that our method is best suited to small displacements and
lower spatial frequencies. Third, we present a single framework
that can be used to amplify both spatial motion and purely temporal
changes, e.g., the heart pulse, and can be adjusted to amplify par-
ticular temporal frequencies—a feature which is not supported by
Lagrangian methods. Finally, we analytically and empirically com-
pare Eulerian and Lagrangian motion magnification approaches un-
der different noisy conditions. To demonstrate our approach, we
present several examples where our method makes subtle variations
in a scene visible.

2 Space-time video processing

Our approach combines spatial and temporal processing to empha-
size subtle temporal changes in a video. The process is illustrated in
Figure 2. We first decompose the video sequence into different spa-
tial frequency bands. These bands might be magnified differently
because (a) they might exhibit different signal-to-noise ratios or (b)
they might contain spatial frequencies for which the linear approx-
imation used in our motion magnification does not hold (Sect. 3).
In the latter case, we reduce the amplification for these bands to
suppress artifacts. When the goal of spatial processing is simply to
increase temporal signal-to-noise ratio by pooling multiple pixels,
we spatially low-pass filter the frames of the video and downsample
them for computational efficiency. In the general case, however, we
compute a full Laplacian pyramid [Burt and Adelson 1983].

We then perform temporal processing on each spatial band. We
consider the time series corresponding to the value of a pixel in a
frequency band and apply a bandpass filter to extract the frequency
bands of interest. For example, we might select frequencies within
0.4-4Hz, corresponding to 24-240 beats per minute, if we wish to
magnify a pulse. If we are able to extract the pulse rate, we can use
a narrow band around that value. The temporal processing is uni-
form for all spatial levels, and for all pixels within each level. We
then multiply the extracted bandpassed signal by a magnification
factor ↵. This factor can be specified by the user, and may be atten-
uated automatically according to guidelines in Sect. 3.2. Possible
temporal filters are discussed in Sect. 4. Next, we add the magni-
fied signal to the original and collapse the spatial pyramid to obtain

Figure 2.1: Overview of the Eulerian Video Magnification method. (source: [WRS+12])

2.2.2 Eulerian Video Magnification

In contrast to the Independent Component Analysis model that focuses on extracting a single

number, the Eulerian Video Magnification uses localized spatial pooling and temporal filtering to

extract and reveal visually the signal corresponding to the cardiac pulse. This allows for amplifi-

cation and visualization of the heart rate signal at each location on the face. This creates potential

for monitoring and diagnostic applications to medicine, i.e. the asymmetry in facial blood flow

can be a symptom of arterial problems.

Besides color amplification, the Eulerian Video Magnification method is also able to reveal

low-amplitude motion which may be hard or impossible for humans to see. Previous attempts

to unveil imperceptible motions in videos have been made, such as, [LTF+05] which follows

a Lagrangian perspective, as in fluid dynamics where the trajectory of particles is tracked over

time. By relying on accurate motion estimation and additional techniques to produce good quality

synthesis, such as, motion segmentation and image in-painting, the algorithm complexity and

computation is expensive and difficult.

On the contrary, the Eulerian Video Magnification method is inspired by the Eulerian per-

spective, where properties of a voxel of fluid, such as pressure and velocity, evolve over time.

The approach of this method to motion magnification is the exaggeration of motion by amplifying

temporal color changes at fixed positions, instead of, explicit estimation of motion.

This method approach, illustrated in figure 2.1, combines spatial and temporal processing to

emphasize subtle temporal changes in a video. First, the video sequence is decomposed into

different spatial frequency bands. Because they may exhibit different signal-to-noise ratios, they

may be magnified differently. In the general case, the full Laplacian pyramid [BA83] may be

computed. Then, temporal processing is performed on each spatial band. The temporal processing

is uniform for all spatial bands, and for all pixels within each band. After that, the extracted

bandpass signal is magnified by a factor of α , which can be specified by the user, and may be

attenuated automatically. Finally, the magnified signal is added to the original image and the

spatial pyramid collapsed to obtain the final output.

7

State of the art

Figure 2.2: Examples of temporal filters. (source: [WRS+12])

2.2.2.1 Spatial filtering

As mention before, the work of [WRS+12] computes the full Laplacian pyramid [BA83] as a

general case for spatial filtering. Each layer of the pyramid may be magnified differently because

it may exhibit different signal-to-noise ratios, or contain spatial frequencies for which the linear

approximation used in motion magnification does not hold [WRS+12, Section 3].

Spatial filtering may also be used to significantly increase signal-to-noise ratio, as previously

mention on section 2.1 and demonstrated on the work of [VSN08] and [WRS+12]. Subtle signals,

such as, a person’s heart rate from a video of its face, may be enhanced this way. For this purpose

the work of [WRS+12] computes a layer of the Gaussian pyramid which may be obtained by

successively scaling down the image by calculating the Gaussian average for each pixel.

However, for the signal of interest to be revealed, the spatial filter applied must be large

enough. Section 5 of [WRS+12] provides an equation to estimate the size for a spatial filter

needed to reveal a signal at a certain noise power level:

S(λ) = S(r) = σ
′2 = k

σ2

r2 (2.3)

where S(λ) represents the signal over spatial frequencies, and since the wavelength, λ , cutoff

of a spatial filter is proportional to its radius, r, the signal may be represented as S(r). The noise

power, σ2, can be estimated using to the technique of [LFSK06]. Finally, because the filtered

noise power level, σ ′2, is inversely proportional to r2, it is possible to solve the equation for r,

where k is a constant that depends on the shape of the low pass filter.

2.2.2.2 Temporal filtering

Temporal filtering is used to extract the motions or signals to be amplified. Thus, the filter choice

is application dependent. For motion magnification, a broad bandpass filter, such as, the butter-

worth filter, is preferred. A narrow bandpass filter produces a more noise-free result for color

amplification of blood flow. An ideal bandpass filter is used on [WRS+12] due to its sharp cutoff

frequencies. Alternatively, for a real-time implementation low-order IIR filters can be useful for

both: color amplification and motion magnification. These filters are illustrated on 2.2.

8

State of the art

Eulerian Video Magnification for Revealing Subtle Changes in the World

Hao-Yu Wu1 Michael Rubinstein1 Eugene Shih2 John Guttag1 Frédo Durand1 William Freeman1

1MIT CSAIL 2Quanta Research Cambridge, Inc.

(a) Input

(b) Magnified (c) Spatiotemporal YT slicestime

y

time

y

Figure 1: An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the
original video sequence (face). (b) The same four frames with the subject’s pulse signal amplified. (c) A vertical scan line from the input (top)
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal
is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video.

Abstract

Our goal is to reveal temporal variations in videos that are diffi-
cult or impossible to see with the naked eye and display them in
an indicative manner. Our method, which we call Eulerian Video
Magnification, takes a standard video sequence as input, and ap-
plies spatial decomposition, followed by temporal filtering to the
frames. The resulting signal is then amplified to reveal hidden in-
formation. Using our method, we are able to visualize the flow
of blood as it fills the face and also to amplify and reveal small
motions. Our technique can run in real time to show phenomena
occurring at temporal frequencies selected by the user.

CR Categories: I.4.7 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery;

Keywords: video-based rendering, spatio-temporal analysis, Eu-
lerian motion, motion magnification

Links: DL PDF WEB

1 Introduction

The human visual system has limited spatio-temporal sensitivity,
but many signals that fall below this capacity can be informative.

For example, human skin color varies slightly with blood circu-
lation. This variation, while invisible to the naked eye, can be ex-
ploited to extract pulse rate [Verkruysse et al. 2008; Poh et al. 2010;
Philips 2011]. Similarly, motion with low spatial amplitude, while
hard or impossible for humans to see, can be magnified to reveal
interesting mechanical behavior [Liu et al. 2005]. The success of
these tools motivates the development of new techniques to reveal
invisible signals in videos. In this paper, we show that a combina-
tion of spatial and temporal processing of videos can amplify subtle
variations that reveal important aspects of the world around us.

Our basic approach is to consider the time series of color values at
any spatial location (pixel) and amplify variation in a given tempo-
ral frequency band of interest. For example, in Figure 1 we auto-
matically select, and then amplify, a band of temporal frequencies
that includes plausible human heart rates. The amplification reveals
the variation of redness as blood flows through the face. For this
application, temporal filtering needs to be applied to lower spatial
frequencies (spatial pooling) to allow such a subtle input signal to
rise above the camera sensor and quantization noise.

Our temporal filtering approach not only amplifies color variation,
but can also reveal low-amplitude motion. For example, in the sup-
plemental video, we show that we can enhance the subtle motions
around the chest of a breathing baby. We provide a mathematical
analysis that explains how temporal filtering interplays with spatial
motion in videos. Our analysis relies on a linear approximation re-
lated to the brightness constancy assumption used in optical flow
formulations. We also derive the conditions under which this ap-
proximation holds. This leads to a multiscale approach to magnify
motion without feature tracking or motion estimation.

Previous attempts have been made to unveil imperceptible motions
in videos. [Liu et al. 2005] analyze and amplify subtle motions and
visualize deformations that would otherwise be invisible. [Wang
et al. 2006] propose using the Cartoon Animation Filter to create
perceptually appealing motion exaggeration. These approaches fol-
low a Lagrangian perspective, in reference to fluid dynamics where
the trajectory of particles is tracked over time. As such, they rely

Figure 2.3: Emphasis of face color changes using the Eulerian Video Magnification method.
(source: [WRS+12])

2.2.2.3 Emphasize color variations for human pulse

The extraction of a person’s cardiac pulse using the Eulerian Video Magnification method was

demonstrated in [WRS+12]. It was also presented that using the right configuration can help

extract the desired signal. There are four steps to take when processing a video using the Eulerian

Video Magnification method:

1. select a temporal bandpass filter;

2. select an amplification factor, α;

3. select a spatial frequency cutoff (specified by spatial wavelength, λc) beyond which an at-

tenuated version of α is used;

4. select the form of the attenuation for α —- either force α to zero for all λ < λc, or linearly

scale α down to zero.

For human pulse color variation, two temporal filters may be used, first selecting frequencies

within 0.4-4Hz, corresponding to 24-240 beats per minute (bpm), then a narrow band of 0.83-

1Hz (50-60 bpm) may be used, if the extraction of the pulse rate was successful.

To emphasize the color change as much as possible, a large amplification factor, α ≈ 100,

and spatial frequency cutoff, λc ≈ 1000, is applied. With an attenuation of α to zero for spatial

wavelengths below λc.

The resulting output can be seen in figure 2.3.

2.2.3 Detrending

Detrending is a method of removing very large ultralow-frequency trends an input signal without

any magnitude distortion, acting as an high-pass filter.

9

State of the art
3

a) Original and detrended RR series

0.7

0.9

1.1

0 100 200
−0.2

0

0.2

0 100 200 0 100 200 0 100 200
Time (s)

R
R

I (
s)

b) Time domain analysis
SDNN RMSSD pNN50 SDNN RMSSD pNN50 SDNN RMSSD pNN50 SDNN RMSSD pNN50
(ms) (ms) (%) (ms) (ms) (%) (ms) (ms) (%) (ms) (ms) (%)

Original 63.62 72.40 53.00 60.96 37.34 16.80 53.01 62.72 53.95 52.93 37.48 17.29
Detrended 55.54 72.10 52.07 41.42 36.98 15.98 49.15 62.51 54.42 41.90 37.21 16.92

c) Frequency domain analysis

0

0.01

0.02

0.03

0 0.25 0.5
0

0.01

0.02

0.03

0 0.25 0.5 0 0.25 0.5 0 0.25 0.5
Frequency (Hz)

PS
D

 (s
2 /H

z)

Fig. 2. The e↵ect of the detrending method on time and frequency domain analysis. a) Original RR series and fitted trends (above) and
detrended RR series (below) for four di↵erent data segments. The duration of each data segment is 200 seconds and they were obtained
from di↵erent subjects. b) The e↵ect of the detrending procedure on three time domain parameters (SDNN, RMSSD and pNN50). c)
PSD estimates for original (thin line) and detrended (bold line) RR series with Welch’s periodogram method (above) and by using a
16’th order AR model (below).

ponent. Each spectrum is however limited to 0.035 s2/Hz
to enable the comparison of the spectrums before and after
detrending. For Welch’s method the VLF components are
properly removed while the higher frequencies are not sig-
nificantly altered by the detrending. But when AR models
of relatively low orders are used, which is usually desirable
in HRV analysis in order to enable a distinct division of
the spectrum into VLF, LF and HF components, the e↵ect
of detrending is remarkable. In each original AR spectrum
the peak around 0.1 Hz is spuriously covered by the strong
VLF component. However in the AR spectrums obtained
after detrending the component near 0.1 Hz is more realis-
tic when compared to the spectrums obtained by Welch’s
method.

IV. Discussion

We have presented an advanced detrending method with
application to HRV analysis. The method is based on
smoothness priors formulation. The main advantage of the
method, compared to methods presented in [7], [5], is its
simplicity. The frequency response of the method is ad-
justed with a single parameter. This smoothing parame-
ter � should be selected in such a way that the spectral
components of interest are not significantly a↵ected by the
detrending. Another advantage of the presented method is
that the filtering e↵ect is attenuated in the beginning and
the end of the data and thus the distortion of data end

points is avoided.

The e↵ect of detrending on time and frequency domain
analysis of HRV was demonstrated. In time domain most
e↵ect is focused on SDNN, which describes the amount
of overall variance of RR series. Instead only little e↵ect
is focused on RMSSD and pNN50 which both describe the
di↵erences in successive RR intervals. In frequency domain
the low frequency trend components increase the power of
VLF component. Thus, when using relatively low order
AR models in spectrum estimation detrending is especially
recommended, since the strong VLF component distorts
other components, especially the LF component, of the
spectrum.

The presented detrending method can be applied to e.g.
respiratory sinus arrhythmia (RSA) quantification. RSA
component is separated from other frequency components
of HRV by adjusting the smoothing parameter � properly.
For other purposes of HRV analysis one should make sure
that the detrending does not lose any useful information
from the lower frequency components. Finally, it should
be emphasized that the presented detrending method is
not restricted to HRV analysis only, but can be applied as
well to other biomedical signals e.g. for detrending of EEG
signals in quantitative EEG analysis.

Figure 2.4: Original RR series and fitted trends (above) and detrended series without magnitude
distortion (below). (source: [TRaK02])

The main advantage of the method presented on the work of [TRaK02], compared to methods

presented in [LOCS95] and [PB90], is its simplicity.

The method consists of separating the input signal, z, into two components, as z = zstat +ztrend ,

where zstat is the nearly stationary component, and ztrend is the low frequency aperiodic trend

component.

An estimation of the nearly stationary component, ẑstat , can be obtained using the equation

below. The detailed derivation of the equation can be found in [TRaK02].

ẑstat = (I− (I +λ
2DT

2 D2)
−1)z (2.4)

where I is the identity matrix, D2 is the discrete approximation of the second order, and λ is

the regularization parameter.

Figure 2.4 presents an example of what this method is able to achieve. The example, taken

from the work of [TRaK02], uses real RR series and the effect of the method on time and frequency

domain analysis of heart rate variability is demonstrated not to lose any useful information.

2.3 Heart rate estimation

In order to convert the extracted plethysmographic signal into the number of beats per minute (bpm),

further processing must be done. Below two methods capable of achieving this goal are high-

lighted.

2.3.1 Power spectrum

Fourier transform is a mathematical transform capable of converting a function of time, f (t), into

a new function representing the frequency domain of the original function.

To calculate the power spectrum, the resulting function from the Fourier transform is then

multiplied by itself.

Since the values are captured from a video, sequence of frames, the function of time is actually

discrete, with a frequency rate equal to the video frame rate, FPS.

10

State of the art

The index, i, corresponding to the maximum of the power spectrum can then be converted into

a frequency value, F , using the equation:

F =
i∗FPS

2N
(2.5)

where N is the size of the signal extracted. F can then be multiplied by 60 to convert it to beats

per minute, and have an estimation of the heart rate from the extracted signal.

2.3.2 Pulse wave detection

In [NI10], an automated algorithm for fast pulse wave detection is presented. The algorithm is

capable of obtaining an estimative of the heart rate from PPG signal, as an alternative to the power

spectrum described above. Moreover, it also introduces validation to the waveform detection by

verifying its shape and timing. Below a simplified description of the algorithm is presented. A

more detailed description can be found in [NI10].

1. Identification of possible peaks and foots of individual pulses

(a) Maximum (MAX)

The signal is divided into consecutive 200ms time intervals and for every segment the

absolute maximum is determined. Some of these maximums are rejected: if they fall

below a predetermined amplitude threshold; or if the distance between two maximums

is less than or equal to 200ms, then the lower maximum is rejected.

(b) Minimum (MIN)

The absolute minimum is determined between every two adjacent maximums. A mini-

mum is rejected, if it is above a predetermined amplitude threshold. When a minimum

is rejected, the lower-amplitude maximum of the two maximum adjacent to the re-

jected minimum is discarded too.

2. Examination and verification of the rising edges

(a) Validation of a single rising edge

If a rising edge is rejected, its maximum and minimum are rejected. A rising edge is

rejected, if its amplitude (AMPL = MAX−MIN) is lower than amplitude threshold; or

its duration is lower than a threshold that depends on the sampling rate; or its amplitude

does not increase smoothly.

(b) Estimation of the similarity of a rising edge to preceding and following rising edges

accepted as valid

Two rising edges are considered similar, if the amplitude of the lower-amplitude rising

edge is greater than 50% of the amplitude of the higher-amplitude rising edge; and if

the maximum of the lower-amplitude rising edge is between ±60% of the maximum

of the higher-amplitude rising edge; and if the minimum of the lower-amplitude rising

edge is between±60% of the minimum of the higher-amplitude rising edge; and if the

11

State of the art

duration of the shorter rising edge is greater then 33% of the duration of the longer

rising edge. The valid rising edges are then categorized according to its characteristics

for the following step. The categorization description is suppressed for brevity and can

be found at [NI10].

(c) Verification of the current rising edge

The rising edges categorized on the previous step are considered valid edges of a pulse

wave if they fulfill at least one of the decision rules presented on [NI10] and suppressed

for brevity.

The validation process described here is important for discarding signals which are not repre-

sentative of pulse waves. Providing a way of calculating the heart rate estimation only on valid

pulse signals.

2.4 Technologies

Below two of the main technologies that will be used during this research work are shortly de-

scribed.

2.4.1 Android SDK

Android SDK is the development kit for the Android platform. The Android platform is an open

source, Linux-based operating system, primarily designed for touchscreen mobile devices, such

as, smartphones.

Because of its open source code and permissive licensing, it allows the software to be freely

modified and distributed. This has allowed Android to be the software of choice for technology

companies that require a low-cost, customizable, and lightweight operating system for mobile

devices and others.

Android has also become the world’s most widely used smartphone platform with a worldwide

smartphone market share of 75% during the third quarter of 2012 [IDC13].

Android consists of a kernel based on Linux kernel with middleware, libraries and APIs writ-

ten in C. Applications, usually, run on an application framework which includes Java-compatible

libraries based on Apache Harmony, an open source, free Java implementation. Java bytecode is

then translated to run on the Dalvik virtual machine.

Porting existing Linux application or libraries to Android is difficult due to the lack of a native

X Window System and lack of support for GNU libraries. Support for simple C and SDL applica-

tion is possible, though, by the usage of JNI, a programming framework that allows Java code to

call and be called by libraries written in C/C++.

12

State of the art

2.4.2 OpenCV – Computer Vision Library

OpenCV is a library of programming functions mainly aimed at real-time image processing. To

support these, it also includes a statistical machine learning library. Moreover, it is a cross-platform

and open source library that is free to use and modify under the BSD license.

“OpenCV was built to provide a common infrastructure for computer vision appli-

cations and to accelerate the use of machine perception in the commercial prod-

ucts.” [Its13]

OpenCV is written in C/C++. There are binding for other languages, such as, Python, Java,

and even Android. However, Java and Android implementation is recent and lacks features and

stability.

2.5 Summary

This chapter starts by describing the concept behind the extraction of cardiac pulse from a person’s

face captured through a simple video or webcam.

It then presents several possible post-processing methods for improving the extraction of the

actual pulse signal. These methods include:

• Independent Component Analysis, a method capable of uncovering independent signals

from a set of observations that are composed of linear mixtures of the underlying sources;

• Eulerian Video Magnification, a method inspired by the Eulerian perspective that exagger-

ates color variations by analyzing how each pixel value changes over time;

• Detrend, a method which removes small trends from an input signal without distorting its

amplitude.

Then algorithms for obtaining the actual beats per minute of the heart rate from the signal are

described:

• Power spectrum, a set of equations capable of finding the frequency of a signal using the

Fourier transform;

• Pulse wave detection, an algorithm for detecting and validating rising edges from a pulse

signal.

Finally, important technologies for the work are described:

• Android, a Linux-based operating system, primarily designed for touchscreen mobile de-

vices;

• OpenCV, a Computer Vision library of programming functions mainly aimed at real-time

image processing.

13

State of the art

14

Chapter 3

Pulse: vital signs monitoring application

This chapter provides a detailed description of the problem addressed, defining its scope, in sec-

tion 3.1.

Moreover, section 3.2 details the implementation of the work developed, in order to create an

Android application, named Pulse, for estimating a person’s heart rate based on the Eulerian Video

Magnification method.

At the end, section 3.3 gives a description of resulting Android application, Pulse.

3.1 Problem description

Section 3.1.1 describes the main objective of the work which consists of an implementation a video

magnification method based on the Eulerian perspective capable of running on a mobile device.

Then, section 3.1.2 provides a description of a simple application of the Eulerian Video Mag-

nification method.

3.1.1 Android-based implementation of Eulerian Video Magnification

As stated on the previous chapters, the Eulerian Video Magnification method is capable of mag-

nifying small motion and amplifying color variation which may be invisible to the naked eye.

Examples of the method application include: estimation of a person’s heart rate from the variation

of its face’s color; respiratory rate from a person’s chest movements; and even, detect asymmetry

in facial blood flow, which may be a symptom of arterial problems.

The benefits of the Eulerian perspective is its low requirements for computational resources

and algorithm complexity, in comparison to other attempts which rely on accurate motion estima-

tion [LTF+05]. However, the existing limits of computational power on mobile devices may not

allow the Eulerian Video Magnification method to execute in real-time.

15

Pulse: vital signs monitoring application

Figure 3.1: Overview of the implemented algorithm to obtain the heart rate of a person from a
webcam or video using the Eulerian Video Magnification method.

The main project’s goal is to develop a lightweight, real-time Eulerian Video Magnification-

based method capable of executing on a mobile device, which will require performance optimiza-

tions and trade-offs will have to taken into account.

3.1.2 Vital signs monitoring

As an objective to demonstrate that the Eulerian Video Magnification-based method developed is

working as expected, the creation of an Android application which estimates a person’s heart rate

in real-time using the device’s camera was pursued.

This goal requires comprehension of the photo-plethysmography concept, extraction of a fre-

quency from a signal, and recognition / validation of a signal as a cardiac pulse.

The application will then need to be tested in order to verify its estimations. The test will be

achieved by comparing results from a sphygmomanometer and other existing application [Tec13]

which use a different method to estimate a person’s heart rate.

3.2 Implementation details

Section 3.2.1 provides an overview of the overall algorithm implemented.

Then, various implementations of the Eulerian Video Magnification method are described on

section 3.2.2.

The face detection, signal validations, and heart rate estimation are also detailed on sec-

tions 3.2.3, 3.2.4, and 3.2.5, respectively.

Finally, section 3.2.6 details the interactions between the Android platform and the imple-

mented library.

16

Pulse: vital signs monitoring application

3.2.1 Overview

In order to create an Android application capable of estimating a person’s heart rate, a desktop test

application was first developed because of its faster implementation speed, and easier testing. The

overall algorithm was divided into several steps, illustrated in figure 3.1, which, later, was extracted

into a library, named Pulse, to be integrated into an Android application, also named Pulse. The

language used to implement the desktop application and library was C/C++. In addition, for the

image processing operations, the computer vision library, OpenCV, was used.

A short description of the overall algorithm’s steps on figure 3.1 and application workflow is

as follows:

1. Original frame, read frame from device’s webcam;

2. Face detector, detect faces in current frame and match with previously detected faces in

order to track multiple faces. Each face information is then fed into the following steps:

(a) Eulerian Video Magnification, magnify detected face’s rectangle;

(b) Signal noise, verify if the signal extracted from the current face is too noisy. If so, that

face’s signal is reset and marked as not valid;

(c) Detrending & Normalization, if the current face’s signal is not too noisy, then detrend

and normalize the signal in order to facilitate further operations with the signal;

(d) Validate signal, the face’s signal is then validated by verifying its shape and timing,

in a similar but simpler manner as found in [NI10]. If the signal is given as invalid, it

is kept as valid for a couple of time, because the validation algorithm may miss some

peaks;

(e) Calculate beats per minute, if the current face’s signal is valid, it is then used to esti-

mate the person’s heart rate;

3. Processed frame, the resulting frame with each magnified face rectangle added back to the

original frame.

On the next sections, there are more detailed information and descriptions of the algorithm’s

steps.

3.2.2 Eulerian Video Magnification implementations

This section presents the details of several different implementations of the Eulerian Video Mag-

nification method.

The first implementations, described on sections 3.2.2.1, 3.2.2.2 and 3.2.2.3, were developed in

Java to facilitate the integration into the Android application. However, the OpenCV Java binding

was still in its early stages which ended up creating difficulties for the development. Thus, the final

implementation, on section 3.2.2.4, was implemented in C/C++, which also reduces the number

of JNI calls from the Android JVM and increases the application performance.

17

Pulse: vital signs monitoring application

Figure 3.2: Overview of the Eulerian Video Magnification method steps.

The purpose of implementing multiple variants of the method was to study how the method

worked and select which spatial and temporal filters would better fit the application goal: amplify

color variation in real-time.

Figure 3.2 shows generic steps of the method which will be detailed on each of the following

sections. The final step, add to original frame, however, remains the same in all implementations.

Which is when the magnified values are added back to the original frame in order to obtain the

processed frame.

3.2.2.1 EvmGdownIdeal

This was the first implementation, thus, its goal was to understand how the method worked, and

match the implementation provided, in MATLAB, by [WRS+12]. In addition, real-time support

was implemented by using a sliding window of 30 frames.

Resize down
This step applies a spatial filter by calculating a level of the Gaussian pyramid. This is

achieved by looping to the desired level where the input to the next loop is the result from

the previous loop, starting with the original frame. A Gaussian pyramid level is calculated

by, first, convolving the input frame with the kernel, K:

K =
1

256


1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

 (3.1)

and then, downsampling the frame by rejecting even rows and columns.

18

Pulse: vital signs monitoring application

Temporal filter
An ideal bandpass filter was used to remove any amplification of undesired frequency from

the color variation of each pixel. To construct this ideal filter, the Fourier transform was

calculated for each pixel over the sliding window of 30 frames. Then, frequencies below

45 and above 240 where set to zero, and the frame was rebuilt using the inverse Fourier

transform.

Amplification
In this step, the result of the temporal filter is multiplied by an α value, which results in the

magnification of the color variation selected by the temporal filter.

Resize up
This step performs the inverse operation of the resize down step, where it upsamples the

frame by inserting even rows and columns with zeros, and then, convolves the input frame

with the same kernel multiplied by 4. However, when the original frame is not multiple of

two, an additional resize operation as to be done in order for the upsampled frame to match

the original frame’s size.

3.2.2.2 EvmGdownIIR

This implementation is very similar to the one above, but uses a different temporal filter which

does not require a sliding window of frames to support real-time results. The filter used was an

IIR bandpass filter, which was constructed from the subtraction of two first-order lowpass IIR

filters. Each lowpass filter is computed as follows:

Ln = Ln−1 ∗ (1−ω)+ω ∗M (3.2)

where M is the current frame, L is the lowpass filter accumulator for each frame, and ω is the

cutoff frequency percentage.

The IIR temporal bandpass filter demonstrated similar results to the ideal temporal filter used

on the first implementation, without the need for persisting a sliding window of frames, which

simplifies the solution and reduces the computational power required by the device.

3.2.2.3 EvmLpyrIIR

Using the same IIR temporal filter as above, this implementation uses a different spatial filter,

which, instead of, computing a level of the Gaussian pyramid, it constructs the full Laplacian

pyramid and then applies the temporal filter to each of its bands and each band is amplified differ-

ently.

Resize down
Figure 3.3 shows the steps to decompose and reconstruct an image for the purpose of build-

ing a Laplacian pyramid. The original image must be decomposed into two images, blurred

19

Pulse: vital signs monitoring application

Figure 3.3: Overview of image deconstruction and reconstruction for building a Laplacian
pyramid.

and fine, by applying any type of spatial lowpass filter and scaling the image down or up by

2. In this case, a Gaussian filter was applied as described on steps resize down and resize up

of the first implementation. Further levels of the pyramid can be computed by decomposing

the blurred image in the same manner.

Temporal filter
The temporal filter used is the IIR bandpass filter, as described above for the previous im-

plementation, only this time it is applied to each level of the pyramid.

Amplification
The amplification method in this implementation is more complex than the one previously

used. It is based on the implementation provided by [WRS+12]. It uses a different α value

for each band of spatial frequencies, which corresponds to the Laplacian pyramid levels.

The magnification value, α , follows the equation:

(1+α)δ (t)<
λ

8
(3.3)

where δ (t) represents the displacement function and λ the spatial wavelength. Further

details about this equation may be found on [WRS+12, Section 3.2].

Resize up
This step reconstructs the original image by iteratively reconstructing each blurred image

until the now processed original image is reached.

This implementation demonstrated that by constructing a Laplacian pyramid for the spatial fil-

ter finer motion detail would be revealed, whereas the color variation, the property to be analyzed,

was less evident.

20

Pulse: vital signs monitoring application

3.2.2.4 Performance optimized EvmGdownIIR

Because the OpenCV Java binding was not complete at the time, the Java desktop implementa-

tions were not executing fast enough for real-time processing. Thus, a C/C++ implementation of

the method that demonstrated better color variation was developed. In addition, after studying the

performance of the application, detailed on section 4.1, the resize operations proved to be compu-

tationally expensive. Therefore, the resize down and resize up steps were modified to faster resize

operations that did not alter the resulting image.

Resize down
This step was changed to a single resize operation using the OpenCV interpolation method

named area, which produces a similar result to the one provided by using a Gaussian filter

and downsampling the image. However, instead of, iteratively downsampling the frame

multiple times, it is now a single resize to a predefined size.

Resize up
This step was also modified to a single resize operation using the linear interpolation method,

which produces a similar result to the one used previously where the image was upsampled

iteratively using a Gaussian filter.

3.2.3 Face detection

The face detection step uses the OpenCV object detector initially proposed on [VJ01] and im-

proved on [LM02]. Which has been previously trained to detect faces.

Because object detectors are computationally expensive, in order to improve performance, a

minimum size for the face detector was set to 40% of the frame width and height. In addition,

since it was expected for the person to remain still during the reading, the face detector was set to

execute only once a second.

Face tracking is simply done by matching the previous and newly detected faces to the closest

one.

• If there are less newly detected faces than the previously detected ones, then match each

new face to the nearest older face. Any older face that is not matched with a newly detected

face is marked for deletion. However, it is only deleted if it fails to find a match on the next

time the face detector executes. This measure allows the face detector to miss a detection of

a face one time.

• Otherwise, if the number of newly detected faces is equal or more than the older faces, then

match each older face to the nearest newly detected face. Any newly detected face that is

not matched with an older face is then marked as a new face.

Another performance boost was achieved by only magnifying each face rectangle instead of

the whole frame. Because of this, the face rectangle must remain as still as possible, in order

to introduce as few artifacts and noise to the Eulerian Video Magnification method. To achieve

21

Pulse: vital signs monitoring application

this, the position and size of the face’s rectangle that is fed into the Eulerian Video Magnification

method is interpolated between the previous and newly detected faces, if the distance between the

two, d, is less than one third of the previous face’s rectangle width, w:

d <
w
3

(3.4)

And, the interpolation percentage, r, used is the ratio between these values:

r =
3d
w

(3.5)

3.2.4 Signal validation

The signal validation has two phases. First, the raw signal, obtained by averaging the mean value

of the green channel of a rectangle’s face, is checked for noise, on step signal noise in figure 3.1.

Then, on step validate signal, the shape and timing of the detrended and normalized signal is

verified.

The raw signal noise is simply verified if the signal standard deviation is higher than 50% of

the α , amplification factor.

Then, each of the following operations are applied to the raw signal:

1. detrend, as in [TRaK02], also shortly described on section 2.2.3;

2. normalization, the normalized signal, S′, is obtained from the detrended signal, S, by sub-

tracting the mean of the signal, S̄, and dividing it by the signal standard deviation, σ :

S′ =
S− S̄

σ
(3.6)

3. mean filter, is done by convolving the signal 3 times with the kernel, K:

K =
1

5∗5


1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

 (3.7)

Finally, the shape and timing of signal is validated by a simplification of the fast pulse wave

detection algorithm [NI10]. It identifies possible signal peaks by dividing the signal into con-

secutive 200ms time intervals and finding the absolute maximum. Some of these maximums are

rejected: if they are a boundary value of that segment; or if they fall below a threshold, which is

60% of the mean of the amplitude of the possible identified peaks so far; or if the distance between

two maximums is less than or equal to 200ms, then the lower maximum is rejected.

22

Pulse: vital signs monitoring application

The signal is said to be valid if:

• it includes at least two peaks;

• the peak count is between the valid human range, between 40 and 240 bpm;

• the peaks’ amplitude standard deviation is less than 0.5;

• the standard deviation of the time interval between peaks is less than 0.5;

To prevent invalidating the signal if a peak is missed or miscounted, the signal is kept as valid

for the next 30 frames.

3.2.5 Heart rate estimation

Even though the simplification of the fast pulse wave detection algorithm presented on the previous

section was capable of counting pulse wave peaks, it would frequently miscount at least by one

peak. Thus, since the period analyzed was short, only 5 seconds at 20 frames per second, a

miscounted peak would introduce a large error to the final value.

In order to obtain the value of beats per minute from the pulse signal, the method presented on

section 2.3.1 was used every time the signal was marked as valid. To prevent big fluctuations, the

value was averaged over the values obtained from the power spectrum method every 1 second.

3.2.6 Android integration

Due to performance, speed implementation, and easier testing, the algorithm’s library was imple-

mented in C/C++. To integrate with the Android SDK, the framework Java Native Interface was

used. Because each JNI call from the Android SDK to the Android NDK introduces performance

overhead, the fewer calls made to the library, the faster the application executes.

The Android application workflow and interaction with the Pulse library is illustrated on fig-

ure 3.4. The arrows that cross the modules’ borders represent JNI methods’ calls. As it is indi-

cated, the whole algorithm is executed in one JNI call each frame in order to improve application

performance. Three extra calls are made to obtain and display data to the user.

3.2.6.1 OpenCV for Android SDK

The OpenCV library is supported in the Android platform by installing a separate Android appli-

cation which deals with selecting the appropriate OpenCV library for that device’s architecture.

Because OpenCV for Android SDK was still in its early stage, it did not support a couple

of features which had to be implemented, such as, switching cameras at runtime, portrait mode,

stretching frame to container, removing the alpha channel from the frame without introducing

more operations.

23

Pulse: vital signs monitoring application

Figure 3.4: Overview of the interaction between the implemented Android application and
library.

Figure 3.5: User interface of the implemented Android application, Pulse.

24

Pulse: vital signs monitoring application

3.3 Pulse: Android application

The user interface of the implemented Android application, Pulse, is shown on figure 3.5.

When the application is opened, the camera starts processing images and requests the user to

place its face in front of the camera. If a face is detected the user is instructed to remain still in

a bright place. Finally, if a cardiac pulse is detected, the heart rate estimated and the signal are

shown on the top of the screen, while, the person’s face magnification is also shown.

Three buttons exists on the top-right corner. From left to right, the first one, represented with

a play icon, starts the record mode. The record mode averages all the heart rate values estimated

in that time period. Pressing the button again finishes the record mode and displays the average of

the beats per minute. This mode was used for the procedure described on section 4.2.

The second button, represented with a camera icon, allows the application to switch between

the front and back camera. The third and last button, represented with a wrench icon, opens

a settings dialog, where the Eulerian Video Magnification may be enabled and disabled and its

amplification value, α , can be changed. Also, an option to turn on and off the number of frames

per second that the application is running at is available.

3.4 Summary

This chapter starts by describing the main goal and motivation for developing a lightweight, real-

time Eulerian Video Magnification-based method for the Android platform.

Then, an overview of the implemented algorithm’s steps is described. The algorithm begins by

detecting a person’s face and magnifying it using the Eulerian Video Magnification method. Then,

it extracts a possible pulse signal by averaging the green channel of a rectangle’s face, which is

validated, processed by detrending and normalization, and validated again, by verifying its shape

and timing. Finally, the heart rate is estimated using the power spectrum technique to obtain a

signals frequency.

The chapter then details various implementations of the Eulerian Video Magnification method

which were implemented:

• EvmGdownIdeal, applies a spatial filter by computing a level of the Gaussian pyramid, and

uses the Fourier transform to implement a temporal ideal bandpass filter;

• EvmGdownIIR, applies the same spatial filter as the previous, but uses a temporal IIR band-

pass filter, which was constructed from the subtraction of two first-order lowpass IIR filters,

which are more suitable for a real-time implementation;

• EvmLpyrIIR, applies the same temporal filter as above, but computes a full Laplacian pyra-

mid for the spatial filter, where each level is amplified differently;

• Performance optimized EvmGdownIIR, is implemented in C/C++, while the others were

implemented in Java, and the spatial filter is modified to single resize operations but the

result is similar to computing a level of the Gaussian pyramid.

25

Pulse: vital signs monitoring application

Face detection uses the OpenCV object detector module. In order to increase performance, the

face detector only executes every one second. Moreover, only the face’s rectangle is magnified,

instead of the whole frame.

Two phases for validating the extracted signal exists. First, the raw signal standard deviation is

checked against a threshold. Then, the raw signal is detrended and normalized, and the processed

signal shape and timing is verified by detecting its peaks.

The algorithm is integrated into an Android application by using the JNI framework, so the

Android SDK is capable of interacting with the native code.

Finally, the resulting Android application, Pulse, user interface is described.

26

Chapter 4

Results

This chapter provides the results obtained during this dissertation and the analysis of these.

Section 4.1 reports several performance improvements to the implemented Eulerian Video

Magnification method and the developed algorithm to estimate a person’s heart rate.

Section 4.2 compares the measurements from the implemented Android application, Pulse,

to a sphygmomanometer, and also, to another Android application by ViTrox that estimates a

person’s heart rate using a different method.

4.1 Performance

Smartphone devices have a low computational power and this was one of the main difficulties. The

first implementations of the application were not fast enough and the implemented Android appli-

cation running on a HUAWEI MediaPad tablet with the Android version 4.0.3 was only capturing

around 2 frames per second.

In order to improve the algorithm and application performance, metrics were obtained using

the High performance C++ Profiler [And13]. This profiler was chosen because of its performance

claim and easy integration in the project.

The machine specifications on which all metrics were obtained are:

Machine MacBook Pro, 15-inch, Late 2008

Processor 2.53 GHz Inter Core 2 Duo

Memory 4 GB 1067 MHz DDR3

Operating System OS X Mountain Lion

The input video used was the video face found at [WRS+13].

27

Results

Operation Calls MCycles Avg
Pulse::onFrame 301 15630.5432 (51%) 51.9287
EvmGdownIIR::onFrame 301 8507.6548 (28%) 28.2646

Table 4.1: Performance metrics obtained form the initial implementation of the C/C++ version of
the desktop application. Excerpt from A.1.

On appendix A various tables can be found representing several performance boosts accom-

plished. The unit used by the High performance C++ Profiler is the number of CPU cycles spent

by that operation, obtained by using the instruction rdtsc [And13].

The main functions that needed to be optimized and analyzed are:

• Pulse::onFrame, which is the function that detects a person face and estimates the heart

rate for each face detected;

• EvmGdownIIR::onFrame, which is the function that implements the Eulerian Video Mag-

nification method.

Table 4.1 shows that these functions were spending a big percentage of the CPU cycles, with

the Pulse function taking 51% and the Eulerian Video Magnification method occupying 28%.

The operations taking more CPU cycles were easily identified by the second table on A.1, also

represented on table 4.2. These operations are:

• OpenCV HighGUI module functions: wait key, imshow, capture;

• resize operations: pyrUp, pyrDown, resize face box, and resize and draw face box back to

frame;

• conversion operations: convert to 8 bit, convert to float;

• matrix operations: add back to original frame;

• detect faces operation, is the OpenCV object detector, detailed on section 3.2.3;

• detrend operation, is the detrending method explained on section 2.2.3;

The first performance boost was achieved by replacing the resize operations by faster resize

methods. All together the resize operations were spending 26% of the CPU cycles as shown by

table 4.2. The optimizations for the operations pyrUp and pyrDown are detailed on section 3.2.2.4.

The rest of the resize operations were changed to use the OpenCV nearest neighbor interpolation

method since the difference of size was small. These optimizations reduced the total percentage

of the CPU cycles to 7% as shown on table 4.3.

The second performance boost was accomplished by reducing the number of executions of the

OpenCV object detector. This operation was occupying around 10% of the CPU cycles as shown

by table 4.2. By executing the face detection operation once every 10 frames its number of CPU

cycles was greatly reduced to 1% as shown on table 4.4.

28

Results

Operation Calls Self MCycles Self Avg
wait key 301 9892.1852 (32%) 32.8644
pyrUp 300 3472.5267 (11%) 11.5751
detect faces 301 2941.3343 (10%) 9.7719
imshow 301 2555.0751 (8%) 8.4886
capture 302 2268.6110 (7%) 7.5120
pyrDown 301 1988.4146 (7%) 6.6060
convert to 8 bit 300 1603.1581 (5%) 5.3439
detrend 301 1538.8180 (5%) 5.1124
resize face box 301 1270.4278 (4%) 4.2207
resize and draw face box back to frame 301 1214.4998 (4%) 4.0349
add back to original frame 300 811.3654 (3%) 2.7046
convert to float 301 604.0527 (2%) 2.0068

Table 4.2: Operations taking more CPU cycles on the initial implementation of the C/C++
version of the desktop application when performance profiling was added. Excerpt from A.1.

Operation Calls Self MCycles Self Avg
pyrUp 300 583.2825 (2%) 1.9443
pyrDown 301 510.0373 (2%) 1.6945
resize and draw face box back to frame 301 430.7046 (2%) 1.4309
resize face box 301 307.4483 (1%) 1.0214

Table 4.3: Performance improvement on resize operations by using faster interpolations methods.
Excerpt from A.2.

Operation Calls Self MCycles Self Avg
detect faces 30 288.2041 (1%) 9.6068

Table 4.4: Performance improvement on face detection by reducing the number of times the
OpenCV object detector was executed. Excerpt from A.3.

29

Results

Operation Calls MCycles Avg
Pulse::onFrame 300 4215.0788 (14%) 14.0503
EvmGdownIIR::onFrame 287 1818.3953 (6%) 6.3359

Table 4.5: Final performance metrics of the main functions. Excerpt from A.4.

A last performance boost applied to the implemented algorithm was the removal of the resize

operations resize face box and resize and draw face box back to frame by modifying the Eulerian

Video Magnification method implemented which removed the requirement of the input image to

be always of the same size.

The result of these performance improvements are shown on table 4.5. With the Pulse function

spending only 14% of the CPU cycles and a performance improvement of 37%, and the Eulerian

Video Magnification method occupying 6% of the CPU cycles and a performance improvement of

22%.

This allowed for the implemented Android application to run at approximately 15 frames per

second on the same Android device previously mentioned.

The tables found on this section can be summarized by figure 4.1.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20-Mar 26-Mar 3-Apr 23-May

M
Cy
cl
es
	

Pulse::onFrame

EvmGdownIIR::onFrame

detect faces

pyrUp

pyrDown

resize face box

resize and draw face box back to
frame

Figure 4.1: A summary of the performance optimizations milestones. The first legend item is the
implementation of the overall algorithm described in section 3.2.1. The second is the

implementation of the Eulerian Video Magnification described in section 3.2.2.4. The rest are
operations that belong to these two functions that were optimized. The transition from 20-Mar to

26-Mar shows the improvement by replacing the pyramid construction and deconstruction
operations by single resize operations and simpler interpolation methods for the resize operations.
The transition to 3-Apr is the restriction of the face detection operation to once a second instead
of every frame. And the final transition, 23-May, is the removal of the last two resize operations

by taking advantage of the improvement from 20-Mar to 26-Mar which removes the requirement
of the input matrix for the Eulerian Video Magnification method to be always of the same size.

30

Results

4.2 Heart rate estimation comparison

To validate the heart rate values obtained by the implemented Android application a test was run

and readings obtained to a total of 9 participants. The procedure for the test was as follows:

1. use the implemented Android application, named Pulse, to obtain an estimation of the per-

son’s heart rate, while at the same time obtain a reading from a sphygmomanometer, which

also produces an average of the heart rate at the end, which would take approximately 30

seconds;

2. then, in order to compare the results to another application, step one was repeated using the

ViTrox application: What’s My Heart Rate [Tec13];

3. finally, each person was asked to do some physical exercise so their heart rate would in-

crease, then step one was repeated.

Tables 4.6 shows the measurements obtained by the above procedure. In order to interpret the

measurements, Bland-Altman plots [MBA86] were used. The mean and standard deviation (SD)

of the differences, mean of the absolute differences and 95% limits of agreement (± 1.96 SD)

were calculated.

Comparing the Bland-Altman plots in figure 4.2, the ViTrox application shows the best agree-

ment against the sphygmomanometer, figure 4.2b; the mean bias was 1.33 bpm with 95% limits

of agreement −3.56 to 6.22 bpm. In comparison, the implemented application, Pulse, had a mean

bias of−12.00 with 95% limits of agreement−33.13 to 9.13 bpm, figure 4.2a, and after the phys-

ical exercise, figure 4.2c, the mean bias was −25.89 with 95% limits of agreement −51.28 to

−0.49 bpm.

The implemented algorithm has worse estimations with higher heart rates. However, by pick-

ing only heart rates lower than 70 bpm according to the sphygmomanometer, table 4.6d and fig-

ure 4.2d, the agreement between the implemented application, Pulse, and the sphygmomanometer

increases to a mean bias of −4.25 with 95% limits of agreement −13.43 to 4.93 bpm.

The limit of 70 bpm was an arbitrary value for which all measurements between the Pulse

application and the sphygmomanometer had an absolute difference equals or higher than 12 bpm.

The reasons for the different results between the ViTrox and Pulse application may be due to

several factors. These may include:

• the ViTrox application does not display the blood flow in real-time which is a computation-

ally expensive operation and may affect the implemented application performance;

• in order to increase the implemented application frames per second, face detection was set

to execute only once a second and its minimum size was large, introducing some instabil-

ity which led to a person’s face not to be detected from time to time, thus affecting the

implemented application performance.

31

Results

Some of the participants, such as, C, E and G, had large differences between the measurements

of the Pulse application and sphygmomanometer. These may be due to the reasons stated above or

also because any small movement or lighting change, due to people passing nearby or participants

moving slightly, would be amplified and greatly affect the final result.

Improvements to the algorithm in order to identify and reject the values resulting from the

situation stated above could be made in a future work.

It should be noted that the main goal of this dissertation was testing the feasibility of im-

plementing an Eulerian Video Magnification-based method on a mobile device with the Android

platform. The creation of an Android application to monitor a person’s heart rate was a simple

example of the application of the performance optimized Eulerian Video Magnification method

developed. Hence, the effort taken on the algorithm performance was higher than the validation

of the heart rate estimation algorithm.

4.3 Summary

In this chapter, the performance optimizations of the algorithm and application along with its

metrics are presented. From a basic, real-time implementation of the Eulerian Video Magnification

method to an optimized version capable of executing on an Android device at a reasonable rate,

approximately 15 frames per second, with a performance improvement of 22%.

In addition, the heart rate estimations obtained using the implemented Android application,

Pulse, were compared to readings from a sphygmomanometer and another Android application

from ViTrox Technologies. Using Bland-Altman plots the best agreement was between the Vitrox

application and the sphygmomanometer, where the mean bias was 1.33 bpm with 95% limits of

agreement −3.56 to 6.22 bpm. Followed by the Pulse application and the sphygmomanometer,

when the beats per minute was lower than 70 according to the sphygmomanometer, with a mean

bias of −4.25 with 95% limits of agreement −13.43 to 4.93 bpm.

32

Results

Participant
Pulse
(bpm)

Sphy.
(bpm)

Diff.
(bpm)

A 55 57 -2
B 60 60 0
C 57 76 -19
D 54 66 -12
E 47 75 -28
F 54 57 -3
G 55 84 -29
H 62 83 -21
I 56 59 -3
I 55 58 -3

(a) Heart rate measurements obtained at the same
time from the implemented Android application,

Pulse, and the sphygmomanometer.

Participant
ViTrox
(bpm)

Sphy.
(bpm)

Diff.
(bpm)

A 66 61 5
B 61 57 4
C 72 72 0
D 65 63 2
E 81 77 4
F 55 56 -1
G 87 87 0
H 79 82 -3
I 55 54 1

(b) Heart rate measurements obtained at the same
time from the ViTrox Android application and the

sphygmomanometer.

Participant
Pulse
(bpm)

Sphy.
(bpm)

Diff.
(bpm)

A 54 87 -33
B 66 65 1
C 57 98 -41
D 48 71 -23
E 64 84 -20
F 51 63 -12
G 69 102 -33
H 66 105 -39
I 47 80 -33

(c) Heart rate measurements obtained at the same
time from the implemented Android application,
Pulse, and the sphygmomanometer, after physical

exercise.

Participant
Pulse
(bpm)

Sphy.
(bpm)

Diff.
(bpm)

A 55 57 -2
B 60 60 0
B 66 65 1
D 54 66 -12
F 54 57 -3
F 51 63 -12
I 56 59 -3
I 55 58 -3

(d) Selection of heart rate measurements obtained
from the Pulse application with an heart rate of 70

bpm or lower according to the sphygmomanometer.

Table 4.6: Heart rate measurements obtained following the procedure described from a
sphygmomanometer and an Android application: either Pulse, (a), (c), (d), which is the

developed application, or the ViTrox application, (b).

33

Results

50 60 70 80 90 100 110 120
Average Heart Rate (bpm)

60

50

40

30

20

10

0

10

20

D
if
fe

re
n
ce

 i
n
 H

e
a
rt

 R
a
te

 (
b
p
m

)

Mean

Mean+1.96SD

Mean-1.96SD

(a) Pulse and sphygmomanometer.

50 60 70 80 90 100 110 120
Average Heart Rate (bpm)

60

50

40

30

20

10

0

10

20

D
if
fe

re
n
ce

 i
n
 H

e
a
rt

 R
a
te

 (
b
p
m

)

Mean
Mean+1.96SD

Mean-1.96SD

(b) ViTrox and sphygmomanometer.

50 60 70 80 90 100 110 120
Average Heart Rate (bpm)

60

50

40

30

20

10

0

10

20

D
if
fe

re
n
ce

 i
n
 H

e
a
rt

 R
a
te

 (
b
p
m

)

Mean

Mean+1.96SD

Mean-1.96SD

(c) Pulse and sphygmomanometer, after physical
exercise.

50 60 70 80 90 100 110 120
Average Heart Rate (bpm)

60

50

40

30

20

10

0

10

20

D
if
fe

re
n
ce

 i
n
 H

e
a
rt

 R
a
te

 (
b
p
m

)

Mean

Mean+1.96SD

Mean-1.96SD

(d) Pulse and sphygmomanometer, only
measurements with an heart rate lower than 70 bpm

according to the sphygmomanometer.

Figure 4.2: Bland-Altman plots demonstrating the agreement between the heart rate
measurements obtained from a sphygmomanometer and an Android application: either Pulse, (a),

(c), (d), which is the developed application, or the ViTrox application, (b).

34

Chapter 5

Conclusions

This final chapter presents a review of the relevant information obtained from this work and an

exposition of further work and research.

Section 5.1 gives an overall description of the work done, from the performance improvements

of the Eulerian Video Magnification method, to the creation of the Android application capable of

estimating a person’s heart rate using the device’s camera.

Finally, section 5.2 exposes future work that could follow the development of an Android-

based implementation of the Eulerian Video Magnification.

5.1 Objective satisfaction

The main goal of this work was providing an Eulerian Video Magnification-based method capa-

ble of running on an Android device. To achieve that, various real-time implementations of the

Eulerian Video Magnification method were developed with the aid of the image processing li-

brary OpenCV. However, these were not efficient enough to execute on a smartphone in real-time.

Hence, a performance profiler was integrated into a desktop application, in order to increase the

performance of the application and the Eulerian Video Magnification method, which was occupy-

ing 28% of the total CPU cycles used by the application.

This Eulerian Video Magnification method implementation was using a temporal bandpass

filter composed by subtracting two first-order IIR lowpass filters, which is more convenient for

a real-time implementation than an ideal temporal filter implemented by applying the Fourier

transform to each pixel for a video segment.

The main performance boost was accomplished by replacing the multiple operations of Gaus-

sian blurring and downsampling, suggested by [WRS+12], by a single resize operation using the

OpenCV interpolation method AREA, which produces a similar result of the Gaussian filter. More-

over, the inverse operations of multiple upsampling and Gaussian blurring followed by an image

35

Conclusions

resize for cases when the downsampled image size had to be rounded was also replaced by a single

resize operation using the linear interpolation method.

At the end, the Eulerian Video Magnification method implemented was occupying only 6% of

the total CPU cycles used by the application, which corresponds to a performance improvement

of 22% in comparison to the initial implementation.

As an example of application of the developed Eulerian Video Magnification method, an An-

droid application, named Pulse, was implemented which was capable of estimating a person’s

heart rate by capturing and analyzing that person’s PPG signal.

Since the implemented algorithm was developed in the programming language C/C++ for

performance reasons, the integration into the Android platform was done through the use of JNI

and the Android NDK.

The application workflow started by grabbing an image from the device’s camera. A person’s

face was detected using the OpenCV object detect module which was previously trained to detect

human faces. A region of interest (ROI) of the person’s face would then be fed into the imple-

mented Eulerian Video Magnification method to amplify color variations. The average of the ROI

green channel was computed, in order to increase the signal-to-noise ratio, and stored. Along

the time, these stored values represent a PPG signal of the underlying blood flow variations. The

signal is further processed using the detrend method to remove trends from the signal without

magnitude distortion. It is then validated as a cardiac pulse signal by detecting its peaks in order

to verify its shape and timing. Finally, the heart rate estimation is computed by identifying the

frequency with the higher power spectrum of the signal.

In order to validate the heart rate estimations obtained by the implemented Android appli-

cation, Pulse, measurements from 9 participants were compared to the readings of a sphygmo-

manometer. The agreement between the two according to the Bland-Altman plots analysis had

a mean bias of −12.00 with 95% limits of agreement −33.13 to 9.13 bpm. Heart rate measure-

ments above 70 bpm according to the sphygmomanometer were not being correctly estimated by

the Pulse application. Removing those increased the agreement between the Pulse application

estimations and sphygmomanometer measurements to a mean bias of −4.25 with 95% limits of

agreement −13.43 to 4.93 bpm.

5.2 Future work

Having developed a lightweight, real-time Eulerian Video Magnification-based method for the

Android platform which goal is to amplify color variations, the performance of different variants

of the Eulerian Video Magnification method could be improved. This would increase the usage of

this method in other kinds of devices and in other kinds of applications.

Other uses for the Eulerian Video Magnification method could be studied, such as, using it

as a security camera to detect small motion by magnifying such motion, or to identify suspicious

people by detecting its heart rate in a contact-free way. Another idea would be to use the Eulerian

36

Conclusions

Video Magnification method with the objective of identifying if a person is drunk or not, based on

the work of [KA12].

Nevertheless, the implemented Pulse application needs to improve its heart rate estimations

accuracy, and its face detection module in order to not lose track of a person’s face. In addition,

other vital signs could be monitored, such as, breathing rate.

In order to support some features of the implemented Android application, Pulse, part of the

OpenCV for Android SDK library had to be modified. These changes can be contributed back to

the community, since the OpenCV support for the Android platform is still in its early stage.

37

Conclusions

38

Appendix A

Performance metrics

This appendix presents performance metrics for the desktop application implemented using the

High performance C++ Profiler. For further details refer to section 4.1.

Each performance metric contains two tables. The first is ordered by function structure and

total cycles the CPU spent on that function. The second table is ordered by self cycles, which

represents the total cycles the CPU spent on that function minus the total cycles the CPU spent on

the children functions.

The short descriptions of the performance metrics and the page number where each can be

found follows:

Appendix A.1 on page 40
Initial performance metrics.

Appendix A.2 on page 42
Performance metrics using faster resize operations.

Appendix A.3 on page 44
Performance metrics when face detection was executed every 10 frames instead of every

frame.

Appendix A.4 on page 47
Performance metrics with no resize face box and resize and draw face box back to frame

operations since the EvmGdownIIR implementation always resizes to a predefined size.

39

Command Line: pulse­desktop­cpp
Date: Wed Mar 20 16:25:02 2013
Raw run time: 33628.91 mcycles
Total calls: 9258
rdtsc overhead: 35 cycles
Per call overhead: 70 cycles
Estimated overhead: 0.6484 mcycles

Function Calls MCycles Avg Self MCycles Self Avg

/Main 1 30524.8251 (100%) 30524.8251 169.5595 169.5595
loop 302 30355.2656 (99%) 100.5141 1.9295 0.0064

void Window::update(...) 301 18192.5399 (60%) 60.4403 1.1025 0.0037
void Pulse::onFrame(...) 301 15630.5432 (51%) 51.9287 0.7415 0.0025

more boxes 301 12688.4674 (42%) 42.1544 1.2613 0.0042
void Pulse::onFace(...) 301 12685.8558 (42%) 42.1457 3.5512 0.0118

void EvmGdownIIR::onFrame(...) 301 8507.6548 (28%) 28.2646 2.8293 0.0094
pyrUp 300 3472.5267 (11%) 11.5751 3472.5267 11.5751
pyrDown 301 1988.4146 (7%) 6.6060 1988.4146 6.6060
convert to 8 bit 300 1603.1581 (5%) 5.3439 1603.1581 5.3439
add back to original frame 300 811.3654 (3%) 2.7046 811.3654 2.7046
convert to float 301 604.0527 (2%) 2.0068 604.0527 2.0068
temporal filter 300 23.2083 (0%) 0.0774 23.2083 0.0774
amplify 300 2.0904 (0%) 0.0070 2.0904 0.0070
first 1 0.0093 (0%) 0.0093 0.0093 0.0093

void cv::detrend(...) 301 1538.8180 (5%) 5.1124 1538.8180 5.1124
resize face box 301 1270.4278 (4%) 4.2207 1270.4278 4.2207
resize and draw face box back to frame 301 1214.4998 (4%) 4.0349 1214.4998 4.0349
drawing 301 104.8707 (0%) 0.3484 104.8707 0.3484
void cv::meanFilter(...) 301 30.0930 (0%) 0.1000 30.0930 0.1000
push back raw and timestamp 301 8.7693 (0%) 0.0291 8.7693 0.0291
void cv::normalization(...) 301 4.5634 (0%) 0.0152 4.5634 0.0152
shift raw and timestamp 201 2.0371 (0%) 0.0101 2.0371 0.0101
bpm 10 0.5708 (0%) 0.0571 0.5708 0.0571

void Pulse::Face::updateBox(...) 301 1.2164 (0%) 0.0040 1.1854 0.0039
void cv::interpolate(...) 301 0.0310 (0%) 0.0001 0.0310 0.0001

int Pulse::Face::nearestBox(...) 300 0.1339 (0%) 0.0004 0.1339 0.0004
detect faces 301 2941.3343 (10%) 9.7719 2941.3343 9.7719

imshow 301 2555.0751 (8%) 8.4886 2555.0751 8.4886
void Window::drawFps(...) 301 5.8191 (0%) 0.0193 0.2972 0.0010

fps drawing 301 5.2947 (0%) 0.0176 5.2947 0.0176
fps string 10 0.1285 (0%) 0.0128 0.1285 0.0128

bool Window::Fps::update() 301 0.0987 (0%) 0.0003 0.0830 0.0003

fps tick 10 0.0157 (0%) 0.0016 0.0157 0.0016
wait key 301 9892.1852 (32%) 32.8644 9892.1852 32.8644
capture 302 2268.6110 (7%) 7.5120 2268.6110 7.5120

40

Function Calls Self MCycles Self Avg

Functions sorted by self time
wait key 301 9892.1852 (32%) 32.8644
pyrUp 300 3472.5267 (11%) 11.5751
detect faces 301 2941.3343 (10%) 9.7719
imshow 301 2555.0751 (8%) 8.4886
capture 302 2268.6110 (7%) 7.5120
pyrDown 301 1988.4146 (7%) 6.6060
convert to 8 bit 300 1603.1581 (5%) 5.3439
void cv::detrend(...) 301 1538.8180 (5%) 5.1124
resize face box 301 1270.4278 (4%) 4.2207
resize and draw face box back to frame 301 1214.4998 (4%) 4.0349
add back to original frame 300 811.3654 (3%) 2.7046
convert to float 301 604.0527 (2%) 2.0068
/Main 1 169.5595 (1%) 169.5595
drawing 301 104.8707 (0%) 0.3484
void cv::meanFilter(...) 301 30.0930 (0%) 0.1000
temporal filter 300 23.2083 (0%) 0.0774
push back raw and timestamp 301 8.7693 (0%) 0.0291
fps drawing 301 5.2947 (0%) 0.0176
void cv::normalization(...) 301 4.5634 (0%) 0.0152
void Pulse::onFace(...) 301 3.5512 (0%) 0.0118
void EvmGdownIIR::onFrame(...) 301 2.8293 (0%) 0.0094
amplify 300 2.0904 (0%) 0.0070
shift raw and timestamp 201 2.0371 (0%) 0.0101
loop 302 1.9295 (0%) 0.0064
more boxes 301 1.2613 (0%) 0.0042
void Pulse::Face::updateBox(...) 301 1.1854 (0%) 0.0039
void Window::update(...) 301 1.1025 (0%) 0.0037
void Pulse::onFrame(...) 301 0.7415 (0%) 0.0025
bpm 10 0.5708 (0%) 0.0571
void Window::drawFps(...) 301 0.2972 (0%) 0.0010
int Pulse::Face::nearestBox(...) 300 0.1339 (0%) 0.0004
fps string 10 0.1285 (0%) 0.0128
bool Window::Fps::update() 301 0.0830 (0%) 0.0003
void cv::interpolate(...) 301 0.0310 (0%) 0.0001
fps tick 10 0.0157 (0%) 0.0016
first 1 0.0093 (0%) 0.0093

41

Command Line: pulse­desktop­cpp
Date: Tue Mar 26 16:34:02 2013
Raw run time: 28482.10 mcycles
Total calls: 9258
rdtsc overhead: 35 cycles
Per call overhead: 70 cycles
Estimated overhead: 0.6484 mcycles

Function Calls MCycles Avg Self MCycles Self Avg

/Main 1 26198.4978 (100%) 26198.4978 233.9525 233.9525
loop 302 25964.5453 (99%) 85.9753 1.7767 0.0059

wait key 301 12363.3849 (47%) 41.0744 12363.3849 41.0744
void Window::update(...) 301 11412.7939 (44%) 37.9163 1.2515 0.0042

void Pulse::onFrame(...) 301 9042.7736 (35%) 30.0424 1.1990 0.0040
equal or more boxes than faces 301 6080.1116 (23%) 20.1997 2.2855 0.0076

void Pulse::onFace(...) 301 6076.7600 (23%) 20.1886 3.9544 0.0131
void EvmGdownIIR::onFrame(...) 301 3638.0518 (14%) 12.0866 1.4819 0.0049

convert to 8 bit 300 1607.4122 (6%) 5.3580 1607.4122 5.3580
pyrUp 300 583.2825 (2%) 1.9443 583.2825 1.9443
convert to float 301 561.4179 (2%) 1.8652 561.4179 1.8652
pyrDown 301 510.0373 (2%) 1.6945 510.0373 1.6945
add back to original frame 300 361.6961 (1%) 1.2057 361.6961 1.2057
temporal filter 300 11.8974 (0%) 0.0397 11.8974 0.0397
amplify 300 0.7884 (0%) 0.0026 0.7884 0.0026
first 1 0.0381 (0%) 0.0381 0.0381 0.0381

void cv::detrend(...) 301 1552.5092 (6%) 5.1578 1552.5092 5.1578
resize and draw face box back to frame 301 430.7046 (2%) 1.4309 430.7046 1.4309
resize face box 301 307.4483 (1%) 1.0214 307.4483 1.0214
drawing 301 95.1404 (0%) 0.3161 95.1404 0.3161
void cv::meanFilter(...) 301 32.0769 (0%) 0.1066 32.0769 0.1066
push back raw and timestamp 301 9.1591 (0%) 0.0304 9.1591 0.0304
void cv::normalization(...) 301 5.1992 (0%) 0.0173 5.1992 0.0173
shift raw and timestamp 201 1.9278 (0%) 0.0096 1.9278 0.0096
bpm 10 0.5883 (0%) 0.0588 0.5883 0.0588

void Pulse::Face::updateBox(...) 301 0.9015 (0%) 0.0030 0.8720 0.0029
void cv::interpolate(...) 301 0.0295 (0%) 0.0001 0.0295 0.0001

int Pulse::Face::nearestBox(...) 300 0.1646 (0%) 0.0005 0.1646 0.0005
detect faces 301 2961.4630 (11%) 9.8387 2961.4630 9.8387

imshow 301 2362.7211 (9%) 7.8496 2362.7211 7.8496
void Window::drawFps(...) 301 6.0477 (0%) 0.0201 0.4610 0.0015

fps drawing 301 5.3400 (0%) 0.0177 5.3400 0.0177

bool Window::Fps::update() 301 0.1247 (0%) 0.0004 0.1096 0.0004

fps tick 10 0.0151 (0%) 0.0015 0.0151 0.0015
fps string 10 0.1219 (0%) 0.0122 0.1219 0.0122

capture 302 2186.5898 (8%) 7.2404 2186.5898 7.2404

42

Function Calls Self MCycles Self Avg

Functions sorted by self time
wait key 301 12363.3849 (47%) 41.0744
detect faces 301 2961.4630 (11%) 9.8387
imshow 301 2362.7211 (9%) 7.8496
capture 302 2186.5898 (8%) 7.2404
convert to 8 bit 300 1607.4122 (6%) 5.3580
void cv::detrend(...) 301 1552.5092 (6%) 5.1578
pyrUp 300 583.2825 (2%) 1.9443
convert to float 301 561.4179 (2%) 1.8652
pyrDown 301 510.0373 (2%) 1.6945
resize and draw face box back to frame 301 430.7046 (2%) 1.4309
add back to original frame 300 361.6961 (1%) 1.2057
resize face box 301 307.4483 (1%) 1.0214
/Main 1 233.9525 (1%) 233.9525
drawing 301 95.1404 (0%) 0.3161
void cv::meanFilter(...) 301 32.0769 (0%) 0.1066
temporal filter 300 11.8974 (0%) 0.0397
push back raw and timestamp 301 9.1591 (0%) 0.0304
fps drawing 301 5.3400 (0%) 0.0177
void cv::normalization(...) 301 5.1992 (0%) 0.0173
void Pulse::onFace(...) 301 3.9544 (0%) 0.0131
equal or more boxes than faces 301 2.2855 (0%) 0.0076
shift raw and timestamp 201 1.9278 (0%) 0.0096
loop 302 1.7767 (0%) 0.0059
void EvmGdownIIR::onFrame(...) 301 1.4819 (0%) 0.0049
void Window::update(...) 301 1.2515 (0%) 0.0042
void Pulse::onFrame(...) 301 1.1990 (0%) 0.0040
void Pulse::Face::updateBox(...) 301 0.8720 (0%) 0.0029
amplify 300 0.7884 (0%) 0.0026
bpm 10 0.5883 (0%) 0.0588
void Window::drawFps(...) 301 0.4610 (0%) 0.0015
int Pulse::Face::nearestBox(...) 300 0.1646 (0%) 0.0005
fps string 10 0.1219 (0%) 0.0122
bool Window::Fps::update() 301 0.1096 (0%) 0.0004
first 1 0.0381 (0%) 0.0381
void cv::interpolate(...) 301 0.0295 (0%) 0.0001
fps tick 10 0.0151 (0%) 0.0015

43

Command Line: pulse­desktop­cpp
Date: Wed Apr 3 15:27:18 2013
Raw run time: 37325.19 mcycles
Total calls: 9276
rdtsc overhead: 35 cycles
Per call overhead: 70 cycles
Estimated overhead: 0.6496 mcycles

Function Calls MCycles Avg Self MCycles Self Avg

/Main 1 23662.3189 (100%) 23662.3189 281.0967 281.0967
loop 301 23381.2222 (99%) 77.6785 2.1955 0.0073

wait key 300 12457.9704 (53%) 41.5266 12457.9704 41.5266
void Window::update(...) 300 7908.6178 (33%) 26.3621 2.1153 0.0071

void Pulse::onFrame(...) 300 4858.2785 (21%) 16.1943 0.6606 0.0022
previously detected faces 270 4128.2891 (17%) 15.2900 0.6873 0.0025

void Pulse::onFace(...) 261 4127.6018 (17%) 15.8146 2.6709 0.0102
void EvmGdownIIR::onFrame(...) 261 2143.9723 (9%) 8.2145 0.9199 0.0035

convert to 8 bit 261 942.6609 (4%) 3.6117 942.6609 3.6117
pyrDown 261 426.8611 (2%) 1.6355 426.8611 1.6355
pyrUp 261 312.9743 (1%) 1.1991 312.9743 1.1991
convert to float 261 305.0777 (1%) 1.1689 305.0777 1.1689
add back to original frame 261 144.4573 (1%) 0.5535 144.4573 0.5535
temporal filter 261 10.3946 (0%) 0.0398 10.3946 0.0398
amplify 261 0.6265 (0%) 0.0024 0.6265 0.0024

void cv::detrend(...) 261 1391.6119 (6%) 5.3318 1391.6119 5.3318
resize and draw face box back to frame 261 259.3229 (1%) 0.9936 259.3229 0.9936
resize face box 261 163.0081 (1%) 0.6246 163.0081 0.6246
void Pulse::draw(...) 261 103.9643 (0%) 0.3983 103.9643 0.3983
void cv::meanFilter(...) 261 28.0939 (0%) 0.1076 28.0939 0.1076
push back raw and timestamp 261 18.7002 (0%) 0.0716 18.7002 0.0716
void Pulse::peaks(...) 261 6.5398 (0%) 0.0251 6.5398 0.0251
void cv::normalization(...) 261 4.5289 (0%) 0.0174 4.5289 0.0174
void Pulse::bpm(...) 88 3.3012 (0%) 0.0375 3.3012 0.0375
shift raw and timestamp 171 1.8873 (0%) 0.0110 1.8873 0.0110

equal or more boxes than faces 30 441.1246 (2%) 14.7042 0.1775 0.0059
void Pulse::onFace(...) 30 440.8805 (2%) 14.6960 0.2918 0.0097

void EvmGdownIIR::onFrame(...) 30 226.4437 (1%) 7.5481 0.1201 0.0040
convert to 8 bit 29 99.2055 (0%) 3.4209 99.2055 3.4209
pyrDown 30 44.8945 (0%) 1.4965 44.8945 1.4965
convert to float 30 33.2546 (0%) 1.1085 33.2546 1.1085
pyrUp 29 32.3243 (0%) 1.1146 32.3243 1.1146

add back to original frame 29 15.4714 (0%) 0.5335 15.4714 0.5335

temporal filter 29 1.0718 (0%) 0.0370 1.0718 0.0370
amplify 29 0.0639 (0%) 0.0022 0.0639 0.0022
first 1 0.0376 (0%) 0.0376 0.0376 0.0376

void cv::detrend(...) 30 152.0189 (1%) 5.0673 152.0189 5.0673
resize and draw face box back to frame 30 24.7377 (0%) 0.8246 24.7377 0.8246
resize face box 30 18.3197 (0%) 0.6107 18.3197 0.6107
void Pulse::draw(...) 30 11.7584 (0%) 0.3919 11.7584 0.3919
void cv::meanFilter(...) 30 3.1375 (0%) 0.1046 3.1375 0.1046
push back raw and timestamp 30 2.0556 (0%) 0.0685 2.0556 0.0685

void Pulse::peaks(...) 30 0.7357 (0%) 0.0245 0.7357 0.0245

44

void Pulse::peaks(...) 30 0.7357 (0%) 0.0245 0.7357 0.0245

void cv::normalization(...) 30 0.6113 (0%) 0.0204 0.6113 0.0204
void Pulse::bpm(...) 13 0.5683 (0%) 0.0437 0.5683 0.0437
shift raw and timestamp 20 0.2019 (0%) 0.0101 0.2019 0.0101

void Pulse::Face::updateBox(...) 30 0.0489 (0%) 0.0016 0.0461 0.0015
void cv::interpolate(...) 30 0.0028 (0%) 0.0001 0.0028 0.0001

int Pulse::Face::nearestBox(...) 29 0.0177 (0%) 0.0006 0.0177 0.0006
detect faces 30 288.2041 (1%) 9.6068 288.2041 9.6068

imshow 300 2381.7817 (10%) 7.9393 2381.7817 7.9393
bgr2rgb 300 330.7533 (1%) 1.1025 330.7533 1.1025
rgb2bgr 300 328.7334 (1%) 1.0958 328.7334 1.0958
void Window::drawFps(...) 300 6.9556 (0%) 0.0232 0.7007 0.0023

fps drawing 300 5.9878 (0%) 0.0200 5.9878 0.0200
fps string 10 0.1634 (0%) 0.0163 0.1634 0.0163
bool Window::Fps::update() 300 0.1038 (0%) 0.0003 0.0987 0.0003

fps tick 10 0.0051 (0%) 0.0005 0.0051 0.0005
capture 301 2161.6192 (9%) 7.1815 2161.6192 7.1815
flip 300 850.8193 (4%) 2.8361 850.8193 2.8361

45

Function Calls Self MCycles Self Avg

Functions sorted by self time
wait key 300 12457.9704 (53%) 41.5266
imshow 300 2381.7817 (10%) 7.9393
capture 301 2161.6192 (9%) 7.1815
void cv::detrend(...) 291 1543.6308 (7%) 5.3046
convert to 8 bit 290 1041.8665 (4%) 3.5926
flip 300 850.8193 (4%) 2.8361
pyrDown 291 471.7555 (2%) 1.6212
pyrUp 290 345.2985 (1%) 1.1907
convert to float 291 338.3323 (1%) 1.1627
bgr2rgb 300 330.7533 (1%) 1.1025
rgb2bgr 300 328.7334 (1%) 1.0958
detect faces 30 288.2041 (1%) 9.6068
resize and draw face box back to frame 291 284.0606 (1%) 0.9762
/Main 1 281.0967 (1%) 281.0967
resize face box 291 181.3279 (1%) 0.6231
add back to original frame 290 159.9287 (1%) 0.5515
void Pulse::draw(...) 291 115.7227 (0%) 0.3977
void cv::meanFilter(...) 291 31.2314 (0%) 0.1073
push back raw and timestamp 291 20.7558 (0%) 0.0713
temporal filter 290 11.4665 (0%) 0.0395
void Pulse::peaks(...) 291 7.2755 (0%) 0.0250
fps drawing 300 5.9878 (0%) 0.0200
void cv::normalization(...) 291 5.1403 (0%) 0.0177
void Pulse::bpm(...) 101 3.8695 (0%) 0.0383
void Pulse::onFace(...) 291 2.9628 (0%) 0.0102
loop 301 2.1955 (0%) 0.0073
void Window::update(...) 300 2.1153 (0%) 0.0071
shift raw and timestamp 191 2.0891 (0%) 0.0109
void EvmGdownIIR::onFrame(...) 291 1.0400 (0%) 0.0036
void Window::drawFps(...) 300 0.7007 (0%) 0.0023
amplify 290 0.6904 (0%) 0.0024
previously detected faces 270 0.6873 (0%) 0.0025
void Pulse::onFrame(...) 300 0.6606 (0%) 0.0022
equal or more boxes than faces 30 0.1775 (0%) 0.0059
fps string 10 0.1634 (0%) 0.0163
bool Window::Fps::update() 300 0.0987 (0%) 0.0003
void Pulse::Face::updateBox(...) 30 0.0461 (0%) 0.0015
first 1 0.0376 (0%) 0.0376
int Pulse::Face::nearestBox(...) 29 0.0177 (0%) 0.0006
fps tick 10 0.0051 (0%) 0.0005
void cv::interpolate(...) 30 0.0028 (0%) 0.0001

46

Command Line: pulse­desktop­cpp
Date: Thu May 23 17:50:59 2013
Raw run time: 35951.60 mcycles
Total calls: 9570
rdtsc overhead: 35 cycles
Per call overhead: 70 cycles
Estimated overhead: 0.6702 mcycles

Function Calls MCycles Avg Self MCycles Self Avg

/Main 1 30905.8421 (100%) 30905.8421 1819.4882 1819.4882
loop 301 29086.3538 (94%) 96.6324 2.1879 0.0073

wait key 300 18507.8590 (60%) 61.6929 18507.8590 61.6929
void Window::update(...) 300 7534.1838 (24%) 25.1139 2.3868 0.0080

void Pulse::onFrame(...) 300 4215.0788 (14%) 14.0503 1.3771 0.0046
previously detected faces 287 3804.9935 (12%) 13.2578 0.5683 0.0020

void Pulse::onFace(...) 287 3804.4251 (12%) 13.2558 6.1077 0.0213
void EvmGdownIIR::onFrame(...) 287 1818.3953 (6%) 6.3359 0.7818 0.0027

convert to 8 bit 287 774.7795 (3%) 2.6996 774.7795 2.6996
pyrDown 287 355.8988 (1%) 1.2401 355.8988 1.2401
pyrUp 287 310.5361 (1%) 1.0820 310.5361 1.0820
convert to float 287 246.5864 (1%) 0.8592 246.5864 0.8592
add back to original frame 287 115.9759 (0%) 0.4041 115.9759 0.4041
temporal filter 287 13.1296 (0%) 0.0457 13.1296 0.0457
amplify 287 0.7073 (0%) 0.0025 0.7073 0.0025

void cv::detrend(...) [with T = double] 287 1655.2995 (5%) 5.7676 1655.2995 5.7676
void Pulse::draw(...) 287 128.3121 (0%) 0.4471 128.3121 0.4471
push back raw and timestamp 287 90.8463 (0%) 0.3165 90.8463 0.3165
void Pulse::bpm(...) 222 51.1195 (0%) 0.2303 51.1195 0.2303
void cv::meanFilter(...) 287 33.1456 (0%) 0.1155 33.1456 0.1155
void Pulse::peaks(...) 287 10.6457 (0%) 0.0371 10.6457 0.0371
void cv::normalization(...) 287 4.2982 (0%) 0.0150 4.2982 0.0150
shift raw and timestamp 192 3.2706 (0%) 0.0170 3.2706 0.0170
verify if raw signal is stable enough 287 2.9335 (0%) 0.0102 2.9335 0.0102
no pulse 65 0.0511 (0%) 0.0008 0.0511 0.0008

equal or more boxes than faces 13 265.3098 (1%) 20.4084 25.1766 1.9367
void Pulse::onFace(...) 13 240.0949 (1%) 18.4688 0.2959 0.0228

void EvmGdownIIR::onFrame(...) 13 140.4893 (0%) 10.8069 0.0949 0.0073
convert to float 13 71.0310 (0%) 5.4639 71.0310 5.4639
convert to 8 bit 12 32.4047 (0%) 2.7004 32.4047 2.7004
pyrDown 13 15.7889 (0%) 1.2145 15.7889 1.2145
pyrUp 12 15.3201 (0%) 1.2767 15.3201 1.2767

add back to original frame 12 4.9465 (0%) 0.4122 4.9465 0.4122

temporal filter 12 0.5413 (0%) 0.0451 0.5413 0.0451
first 1 0.3284 (0%) 0.3284 0.3284 0.3284
amplify 12 0.0336 (0%) 0.0028 0.0336 0.0028

void cv::detrend(...) [with T = double] 13 64.0148 (0%) 4.9242 64.0148 4.9242
void cv::meanFilter(...) 13 15.9259 (0%) 1.2251 15.9259 1.2251
push back raw and timestamp 13 7.3911 (0%) 0.5685 7.3911 0.5685
void cv::normalization(...) 13 5.6258 (0%) 0.4328 5.6258 0.4328
void Pulse::draw(...) 13 5.3366 (0%) 0.4105 5.3366 0.4105
void Pulse::peaks(...) 13 0.4045 (0%) 0.0311 0.4045 0.0311

void Pulse::bpm(...) 9 0.3181 (0%) 0.0353 0.3181 0.0353

47

void Pulse::bpm(...) 9 0.3181 (0%) 0.0353 0.3181 0.0353

verify if raw signal is stable enough 13 0.1419 (0%) 0.0109 0.1419 0.0109
shift raw and timestamp 8 0.1189 (0%) 0.0149 0.1189 0.0149
void Pulse::Face::reset() 1 0.0227 (0%) 0.0227 0.0227 0.0227
no pulse 4 0.0094 (0%) 0.0023 0.0094 0.0023

void Pulse::Face::updateBox(...) 13 0.0287 (0%) 0.0022 0.0268 0.0021
void cv::interpolate(...) 13 0.0020 (0%) 0.0002 0.0020 0.0002

int Pulse::Face::nearestBox(...) 12 0.0095 (0%) 0.0008 0.0095 0.0008
detect faces 13 143.3985 (0%) 11.0307 143.3985 11.0307

imshow 300 2374.3917 (8%) 7.9146 2374.3917 7.9146
rgb2bgr 300 463.3646 (1%) 1.5445 463.3646 1.5445
bgr2rgb 300 446.2240 (1%) 1.4874 446.2240 1.4874
void Window::drawTrackbarValues(...) 300 26.9892 (0%) 0.0900 26.9892 0.0900
void Window::drawFps(...) 300 5.7488 (0%) 0.0192 0.5109 0.0017

fps drawing 300 4.9656 (0%) 0.0166 4.9656 0.0166
fps string 10 0.1605 (0%) 0.0160 0.1605 0.0160
bool Window::Fps::update() 300 0.1118 (0%) 0.0004 0.1066 0.0004

fps tick 10 0.0052 (0%) 0.0005 0.0052 0.0005
capture 301 2182.5902 (7%) 7.2511 2182.5902 7.2511
flip 300 859.5329 (3%) 2.8651 859.5329 2.8651

48

Function Calls Self MCycles Self Avg

Functions sorted by self time
wait key 300 18507.8590 (60%) 61.6929
imshow 300 2374.3917 (8%) 7.9146
capture 301 2182.5902 (7%) 7.2511
/Main 1 1819.4882 (6%) 1819.4882
void cv::detrend(...) [with T = double] 300 1719.3143 (6%) 5.7310
flip 300 859.5329 (3%) 2.8651
convert to 8 bit 299 807.1842 (3%) 2.6996
rgb2bgr 300 463.3646 (1%) 1.5445
bgr2rgb 300 446.2240 (1%) 1.4874
pyrDown 300 371.6877 (1%) 1.2390
pyrUp 299 325.8562 (1%) 1.0898
convert to float 300 317.6175 (1%) 1.0587
detect faces 13 143.3985 (0%) 11.0307
void Pulse::draw(...) 300 133.6486 (0%) 0.4455
add back to original frame 299 120.9224 (0%) 0.4044
push back raw and timestamp 300 98.2373 (0%) 0.3275
void Pulse::bpm(...) 231 51.4376 (0%) 0.2227
void cv::meanFilter(...) 300 49.0716 (0%) 0.1636
void Window::drawTrackbarValues(...) 300 26.9892 (0%) 0.0900
equal or more boxes than faces 13 25.1766 (0%) 1.9367
temporal filter 299 13.6709 (0%) 0.0457
void Pulse::peaks(...) 300 11.0502 (0%) 0.0368
void cv::normalization(...) 300 9.9240 (0%) 0.0331
void Pulse::onFace(...) 300 6.4035 (0%) 0.0213
fps drawing 300 4.9656 (0%) 0.0166
shift raw and timestamp 200 3.3895 (0%) 0.0169
verify if raw signal is stable enough 300 3.0755 (0%) 0.0103
void Window::update(...) 300 2.3868 (0%) 0.0080
loop 301 2.1879 (0%) 0.0073
void Pulse::onFrame(...) 300 1.3771 (0%) 0.0046
void EvmGdownIIR::onFrame(...) 300 0.8766 (0%) 0.0029
amplify 299 0.7409 (0%) 0.0025
previously detected faces 287 0.5683 (0%) 0.0020
void Window::drawFps(...) 300 0.5109 (0%) 0.0017
first 1 0.3284 (0%) 0.3284
fps string 10 0.1605 (0%) 0.0160
bool Window::Fps::update() 300 0.1066 (0%) 0.0004
no pulse 69 0.0604 (0%) 0.0009
void Pulse::Face::updateBox(...) 13 0.0268 (0%) 0.0021
void Pulse::Face::reset() 1 0.0227 (0%) 0.0227
int Pulse::Face::nearestBox(...) 12 0.0095 (0%) 0.0008
fps tick 10 0.0052 (0%) 0.0005
void cv::interpolate(...) 13 0.0020 (0%) 0.0002

49

Performance metrics

50

References

[And13] Andrew. High performance c++ profiling | andrew. http://floodyberry.wordpress.
com/2009/10/07/high-performance-cplusplus-profiling/, March 2013.

[BA83] P. Burt and E. Adelson. The laplacian pyramid as a compact image code. Commu-
nications, IEEE Transactions on, 31(4):532–540, 1983.

[Com94] P. Comon. Independent component analysis, a new concept? Signal processing,
36(3):287–314, 1994.

[Gre97] EF Greneker. Radar sensing of heartbeat and respiration at a distance with appli-
cations of the technology. In Radar 97 (Conf. Publ. No. 449), pages 150–154. IET,
1997.

[GSMP07] M. Garbey, N. Sun, A. Merla, and I. Pavlidis. Contact-free measurement of cardiac
pulse based on the analysis of thermal imagery. Biomedical Engineering, IEEE
Transactions on, 54(8):1418–1426, 2007.

[HZCS08] Sijung Hu, Jia Zheng, Vassilios Chouliaras, and Ron Summers. Feasibility of imag-
ing photoplethysmography. In BioMedical Engineering and Informatics, 2008.
BMEI 2008. International Conference on, volume 2, pages 72–75. IEEE, 2008.

[IDC13] IDC. Android marks fourth anniversary since launch with 75.0in third quarter,
according to idc. http://www.idc.com/getdoc.jsp?containerId=prUS23771812,
January 2013.

[Its13] OpenCV Developers Team: Itseez. About | opencv. http://opencv.org/about.
html, January 2013.

[KA12] Georgia Koukiou and Vassilis Anastassopoulos. Drunk person identification using
thermal infrared images. International Journal of Electronic Security and Digital
Forensics, 4(4):229–243, 2012.

[LFSK06] C. Liu, W.T. Freeman, R. Szeliski, and S.B. Kang. Noise estimation from a single
image. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 1, pages 901–908. IEEE, 2006.

[LM02] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for rapid
object detection. In Image Processing. 2002. Proceedings. 2002 International Con-
ference on, volume 1, pages I–900. IEEE, 2002.

[LOCS95] Daniel A Litvack, Tim F Oberlander, Laurel H Carney, and J Philip Saul. Time
and frequency domain methods for heart rate variability analysis: a methodological
comparison. Psychophysiology, 32(5):492–504, 1995.

51

http://floodyberry.wordpress.com/2009/10/07/high-performance-cplusplus-profiling/
http://floodyberry.wordpress.com/2009/10/07/high-performance-cplusplus-profiling/
http://www.idc.com/getdoc.jsp?containerId=prUS23771812
http://opencv.org/about.html
http://opencv.org/about.html

REFERENCES

[LTF+05] C. Liu, A. Torralba, W.T. Freeman, F. Durand, and E.H. Adelson. Motion mag-
nification. In ACM Transactions on Graphics (TOG), volume 24, pages 519–526.
ACM, 2005.

[MBA86] J Martin Bland and DouglasG Altman. Statistical methods for assessing agreement
between two methods of clinical measurement. The lancet, 327(8476):307–310,
1986.

[NI10] Bistra Nenova and Ivo Iliev. An automated algorithm for fast pulse wave detection.
International Journal Bioantomation, 14(3):203–216, 2010.

[PB90] Stephen W Porges and Robert E Bohrer. The analysis of periodic processes in
psychophysiological research. 1990.

[Phi13] Philips. Philips vital signs camera. http://www.vitalsignscamera.com, January
2013.

[PMP10] M.Z. Poh, D.J. McDuff, and R.W. Picard. Non-contact, automated cardiac pulse
measurements using video imaging and blind source separation. Optics Express,
18(10):10762–10774, 2010.

[PMP11] M.Z. Poh, D.J. McDuff, and R.W. Picard. Advancements in noncontact, multi-
parameter physiological measurements using a webcam. Biomedical Engineering,
IEEE Transactions on, 58(1):7–11, 2011.

[Por13] Fraunhofer Portugal. Fraunhofer portugal - about us. http://www.fraunhofer.pt,
January 2013.

[Tec13] ViTrox Technologies. What’s my heart rate. http://www.whatsmyheartrate.com,
May 2013.

[TRaK02] Mika P Tarvainen, Perttu O Ranta-aho, and Pasi A Karjalainen. An advanced de-
trending method with application to hrv analysis. Biomedical Engineering, IEEE
Transactions on, 49(2):172–175, 2002.

[UT93] S.S. Ulyanov and V.V. Tuchin. Pulse-wave monitoring by means of focused laser
beams scattered by skin surface and membranes. In OE/LASE’93: Optics, Electro-
Optics, & Laser Applications in Science& Engineering, pages 160–167. Interna-
tional Society for Optics and Photonics, 1993.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I–511. IEEE, 2001.

[VSN08] Wim Verkruysse, Lars O Svaasand, and J Stuart Nelson. Remote plethysmographic
imaging using ambient light. Optics express, 16(26):21434–21445, 2008.

[WMVdS05] FP Wieringa, F Mastik, and AFW Van der Steen. Contactless multiple wavelength
photoplethysmographic imaging: a first step toward “spo2 camera” technology. An-
nals of biomedical engineering, 33(8):1034–1041, 2005.

52

http://www.vitalsignscamera.com
http://www.fraunhofer.pt
http://www.whatsmyheartrate.com

REFERENCES

[WRS+12] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, and
William T. Freeman. Eulerian video magnification for revealing subtle changes in
the world. ACM Trans. Graph. (Proceedings SIGGRAPH 2012), 31(4), 2012.

[WRS+13] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo Durand, and
William T. Freeman. Eulerian video magnification. http://people.csail.mit.edu/
mrub/vidmag/, January 2013.

53

http://people.csail.mit.edu/mrub/vidmag/
http://people.csail.mit.edu/mrub/vidmag/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Outline

	2 State of the art
	2.1 Photo-plethysmography
	2.2 Signal post-processing
	2.2.1 Independent Component Analysis
	2.2.2 Eulerian Video Magnification
	2.2.3 Detrending

	2.3 Heart rate estimation
	2.3.1 Power spectrum
	2.3.2 Pulse wave detection

	2.4 Technologies
	2.4.1 Android SDK
	2.4.2 OpenCV – Computer Vision Library

	2.5 Summary

	3 Pulse: vital signs monitoring application
	3.1 Problem description
	3.1.1 Android-based implementation of Eulerian Video Magnification
	3.1.2 Vital signs monitoring

	3.2 Implementation details
	3.2.1 Overview
	3.2.2 Eulerian Video Magnification implementations
	3.2.3 Face detection
	3.2.4 Signal validation
	3.2.5 Heart rate estimation
	3.2.6 Android integration

	3.3 Pulse: Android application
	3.4 Summary

	4 Results
	4.1 Performance
	4.2 Heart rate estimation comparison
	4.3 Summary

	5 Conclusions
	5.1 Objective satisfaction
	5.2 Future work

	A Performance metrics
	References

