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Figure 2: Overview of the Eulerian video magnification framework. The system first decomposes the input video sequence into different
spatial frequency bands, and applies the same temporal filter to all bands. The filtered spatial bands are then amplified by a given factor ↵,
added back to the original signal, and collapsed to generate the output video. The choice of temporal filter and amplification factors can be
tuned to support different applications. For example, we use the system to reveal unseen motions of a Digital SLR camera, caused by the
flipping mirror during a photo burst (camera; full sequences are available in the supplemental video).

on accurate motion estimation, which is computationally expensive
and difficult to make artifact-free, especially at regions of occlusion
boundaries and complicated motions. Moreover, Liu et al. [2005]
have shown that additional techniques, including motion segmen-
tation and image in-painting, are required to produce good quality
synthesis. This increases the complexity of the algorithm further.

In contrast, we are inspired by the Eulerian perspective, where
properties of a voxel of fluid, such as pressure and velocity, evolve
over time. In our case, we study and amplify the variation of pixel
values over time, in a spatially-multiscale manner. In our Eulerian
approach to motion magnification, we do not explicitly estimate
motion, but rather exaggerate motion by amplifying temporal color
changes at fixed positions. We rely on the same differential approx-
imations that form the basis of optical flow algorithms [Lucas and
Kanade 1981; Horn and Schunck 1981].

Temporal processing has been used previously to extract invisible
signals [Poh et al. 2010] and to smooth motions [Fuchs et al. 2010].
For example, Poh et al. [2010] extract a heart rate from a video of a
face based on the temporal variation of the skin color, which is nor-
mally invisible to the human eye. They focus on extracting a single
number, whereas we use localized spatial pooling and bandpass fil-
tering to extract and reveal visually the signal corresponding to the
pulse. This primal domain analysis allows us to amplify and visu-
alize the pulse signal at each location on the face. This has impor-
tant potential monitoring and diagnostic applications to medicine,
where, for example, the asymmetry in facial blood flow can be a
symptom of arterial problems.

Fuchs et al. [2010] use per-pixel temporal filters to dampen tempo-
ral aliasing of motion in videos. They also discuss the high-pass
filtering of motion, but mostly for non-photorealistic effects and for
large motions (Figure 11 in their paper). In contrast, our method
strives to make imperceptible motions visible using a multiscale
approach. We analyze our method theoretically and show that it
applies only for small motions.

In this paper, we make several contributions. First, we demon-
strate that nearly invisible changes in a dynamic environment can be
revealed through Eulerian spatio-temporal processing of standard
monocular video sequences. Moreover, for a range of amplification
values that is suitable for various applications, explicit motion es-
timation is not required to amplify motion in natural videos. Our

approach is robust and runs in real time. Second, we provide an
analysis of the link between temporal filtering and spatial motion
and show that our method is best suited to small displacements and
lower spatial frequencies. Third, we present a single framework
that can be used to amplify both spatial motion and purely temporal
changes, e.g., the heart pulse, and can be adjusted to amplify par-
ticular temporal frequencies—a feature which is not supported by
Lagrangian methods. Finally, we analytically and empirically com-
pare Eulerian and Lagrangian motion magnification approaches un-
der different noisy conditions. To demonstrate our approach, we
present several examples where our method makes subtle variations
in a scene visible.

2 Space-time video processing

Our approach combines spatial and temporal processing to empha-
size subtle temporal changes in a video. The process is illustrated in
Figure 2. We first decompose the video sequence into different spa-
tial frequency bands. These bands might be magnified differently
because (a) they might exhibit different signal-to-noise ratios or (b)
they might contain spatial frequencies for which the linear approx-
imation used in our motion magnification does not hold (Sect. 3).
In the latter case, we reduce the amplification for these bands to
suppress artifacts. When the goal of spatial processing is simply to
increase temporal signal-to-noise ratio by pooling multiple pixels,
we spatially low-pass filter the frames of the video and downsample
them for computational efficiency. In the general case, however, we
compute a full Laplacian pyramid [Burt and Adelson 1983].

We then perform temporal processing on each spatial band. We
consider the time series corresponding to the value of a pixel in a
frequency band and apply a bandpass filter to extract the frequency
bands of interest. For example, we might select frequencies within
0.4-4Hz, corresponding to 24-240 beats per minute, if we wish to
magnify a pulse. If we are able to extract the pulse rate, we can use
a narrow band around that value. The temporal processing is uni-
form for all spatial levels, and for all pixels within each level. We
then multiply the extracted bandpassed signal by a magnification
factor ↵. This factor can be specified by the user, and may be atten-
uated automatically according to guidelines in Sect. 3.2. Possible
temporal filters are discussed in Sect. 4. Next, we add the magni-
fied signal to the original and collapse the spatial pyramid to obtain
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