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Abstract

Eulerian Video Magnification is a recently presented method capable of revealing temporal varia-
tions in videos that are impossible to see with the naked eye. Using this method, it is possible to
visualize the flow of blood as it fills the face. From its result, a person’s heart rate is possible to be
extracted.

This research work is an internal project of Fraunhofer Portugal and its goal is to test the
feasibility of the implementation of the Eulerian Video Magnification method on smartphones by
developing an Android application for monitoring vital signs based on the Eulerian Video Magni-
fication method.

There has been some successful effort on the assessment of vital signs, such as, heart rate, and
breathing rate, in a contact-free way using a webcamera and even a smartphone. However, since
the Eulerian Video Magnification method was recently proposed, its implementation has not been
tested in smartphones yet.

The application will include features, such as, detection of a person’s cardiac pulse, dealing
with artifacts’ motion, and real-time display of the magnified blood flow. Then, the application
performance will be evaluated through tests with several individuals and the assessed heart rate
compared to the one detected by the Philips application, and to the measurement of an heart rate
monitor or a pulse oximeter.
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Chapter 1

Introduction

This chapter introduces this work, by first presenting its context, motivation, and project’s objec-

tives, on sections 1.1, 1.2, and 1.3, respectively.

Finally, section 1.4 describes the document outline.

1.1 Context

Eulerian Video Magnification is a method, recently presented at SIGGRAPH1 2012, capable of

revealing temporal variations in videos that are impossible to see with the naked eye. Using this

method, it is possible to visualize the flow of blood as it fills the face [WRS+12]. Which pro-

vides enough information to assess the heart rate in a contact-free way using a camera [WRS+12,

PMP10, PMP11].

The main field of this research work is image processing and computer vision, whose main

purpose is to translate dimensional data from the real world in the form of images into numerical

or symbolical information.

Other fields include medical applications, software development for mobile devices, digital

signal processing.

This research work is an internal project of Fraunhofer Portugal2 supervised by Luís Rosado.

Fraunhofer Portugal a is non-profit private association founded by Fraunhofer-Gesellschaft3 [Por13]

and

“aims on the creation of scientific knowledge capable of generating added value to

its clients and partners, exploring technology innovations oriented towards economic

growth, the social well-being and the improvement of the quality of life of its end-

users.” [Por13]

1http://www.siggraph.org/
2http://www.fraunhofer.pt/
3http://www.fraunhofer.de/en/about-fraunhofer/
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Introduction

1.2 Motivation

Due to being recently proposed, the Eulerian Video Magnification method implementation has not

been tested in smartphones yet.

There has been some successful effort on the assessment of vital signs, such as, heart rate, and

breathing rate, in a contact-free way using a webcamera [WRS+12, PMP10, PMP11], and even a

smartphone [Tec13, Phi13].

Other similar products, which require specialist hardware and are thus expensive, include laser

Doppler [UT93], microwave Doppler radar [Gre97], and thermal imaging [GSMP07].

Since it is a cheaper method of assessing vital signs in a contact-free way than the above

products, this research work has potential for advancing fields, such as, telemedicine, personal

health-care, and ambient assisting living.

Despite the existence of very similar products by Philips [Phi13] and ViTrox Technologies [Tec13]

to the one proposed on this research work, none of these implements the Eulerian Video Magni-

fication method. Moreover, the application to be developed during this research work will have

additional features described on the next section 1.3.

1.3 Objectives

This research work goal is to test the feasibility of the implementation of the Eulerian Video

Magnification method on smartphones by developing an Android application for monitoring vital

signs based on the Eulerian Video Magnification method.

This application should include the following features:

• heart rate detection and assessment based on the Eulerian Video Magnification method;

• display real-time changes, such as, the magnified blood flow, obtained from the Eulerian

Video Magnification method;

• deal with artifacts’ motion, due to, person and/or smartphone movement.

It should be noted that a straightforward implementation of the Eulerian Video Magnification

method is not possible, due to various reasons. First, the Eulerian Video Magnification method

provides motion magnification along with color magnification which will introduce several prob-

lems with artifacts’ motion. Second, the requirement of implementing a real-time smartphone

application will create performance issues which will have to be addressed and trade-offs will

have to be considered.

The application performance should then be evaluated through tests with several individuals

and the assessed heart rate compared to the ones detected by another application [Tec13, Phi13],

and to the measurement of an electronic sphygmomanometer.

2



Introduction

1.4 Outline

The rest of the document is structured as follows:

Chapter 2 introduces the concepts necessary to understand the presented problem. In addition, it

presents the existing related work, and a description of the technologies to be used.

Chapter 3 ...

Chapter ?? presents the approach taken to solve the problem. Moreover, it introduces the testing

and evaluation methodologies.

Chapter 4 ...

Chapter 5 ...

Chapter 6 ...

3
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Chapter 2

State of the art

This chapter presents several studies regarding the heart rate estimation from a person’s face cap-

tured through a simple webcam.

Section 2.1 describe the concept that explains how the cardiac pulse is detected from a person’s

face in a remote, contact-free way.

Post-processing methods, which may be applied to the retrieved signal, are detailed on sec-

tion 2.2.

In order to estimate the heart rate, a couple of techniques are also detailed on section 2.3.

Finally, section 2.4 reviews the main technologies and tools used throughout this work.

2.1 Photo-plethysmography

Photo-plethysmography (PPG) is the concept of measuring volumetric changes of an organ opti-

cally. Its most established use is in pulse oximeters.

PPG is based on the principle that blood absorbs more light than surrounding tissue thus vari-

ations on blood volume affect light reflectance [VSN08].

The use of dedicated light sources and infra-red wavelengths, and contact probes has been the

norm [UT93, Gre97, GSMP07]. However, recently, remote, non-contact PPG imaging has been

explored.

The method used on the article [VSN08] captures the pixel values (red, green, and blue chan-

nels) of the facial area of a previously recorded video where volunteers were asked to minimize

movements. The pixel values within a region of interest (ROI) was then averaged for each frame.

This spatial averaging was found to significantly increase signal-to-noise ratio. The heart rate

estimation was then calculated by applying Fast Fourier transforms and the power spectrum as

explained on section 2.3.1.

5
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The authors of [VSN08] demonstrate that the fact that the green channel features a stronger

heart rate signal as compared to the red and blue channels, is a strong evidence that the signal is

due to variations in blood volume because (oxy-) hemoglobin absorbs green light.

2.2 Signal post-processing

After obtaining the raw pixel values (red, green, and blue channels), a conjunction of the following

methods may be used to extract and improve the reflected plethysmography signal. However, each

method introduces complexity and expensive computation.

2.2.1 Independent Component Analysis

Independent Component Analysis is a special case of blind source separation and is a relatively

new technique for uncovering independent signals from a set of observations that are composed of

linear mixtures of the underlying sources [Com94].

In this case, the underlying source signal of interest is the cardiac pulse that propagates

throughout the body, which modify the path length of the incident ambient light due to volu-

metric changes in the facial blood vessels during the cardiac cycle, such that subsequent changes

in amount of reflected light indicate the timing of cardiovascular events.

By recording a video of the facial region, the red, green, and blue (RGB) color sensors pick up

a mixture of the reflected plethysmographic signal along with other sources of fluctuations in light

due to artifacts. Each color sensor records a mixture of the original source signals with slightly

different weights. These observed signals from the red, green and blue color sensors are denoted

by x1(t), x2(t) and x3(t) respectively, which are amplitudes of the recorded signals at time point

t. In conventional Independent Component Analysis model the number of recoverable sources

cannot exceed the number of observations, thus three underlying source signals were assumed,

represented by s1(t), s2(t) and s3(t). The Independent Component Analysis model assumes that

the observed signals are linear mixtures of the sources, i.e. xi(t) = ∑
3
j=1 ai js j(t) for each i = 1,2,3.

This can be represented compactly by the mixing equation

x(t) = As(t) (2.1)

where the column vectors x(t) = [x1(t),x2(t),x3(t)]T , s(t) = [s1(t),s2(t),s3(t)]T and the square

3×3 matrix A contains the mixture coefficients ai j. The aim of Independent Component Analysis

model is to find a separating or demixing matrix W that is an approximation of the inverse of the

original mixing matrix A whose output

ŝ(t) =Wx(t) (2.2)

6



State of the art

Sp
at

ia
l

D
ec

om
po

si
tio

n

Input video

Temporal
Processing
(pixel-wise) ɲ1

ɲ2

ɲnͲ1

R
ec

on
st

ru
ct

io
n

Eulerian video magnification Output video

ɲn

Ȉ

Ȉ

Ȉ

Ȉtime

y

time

y

ٔ

Figure 2: Overview of the Eulerian video magnification framework. The system first decomposes the input video sequence into different
spatial frequency bands, and applies the same temporal filter to all bands. The filtered spatial bands are then amplified by a given factor ↵,
added back to the original signal, and collapsed to generate the output video. The choice of temporal filter and amplification factors can be
tuned to support different applications. For example, we use the system to reveal unseen motions of a Digital SLR camera, caused by the
flipping mirror during a photo burst (camera; full sequences are available in the supplemental video).

on accurate motion estimation, which is computationally expensive
and difficult to make artifact-free, especially at regions of occlusion
boundaries and complicated motions. Moreover, Liu et al. [2005]
have shown that additional techniques, including motion segmen-
tation and image in-painting, are required to produce good quality
synthesis. This increases the complexity of the algorithm further.

In contrast, we are inspired by the Eulerian perspective, where
properties of a voxel of fluid, such as pressure and velocity, evolve
over time. In our case, we study and amplify the variation of pixel
values over time, in a spatially-multiscale manner. In our Eulerian
approach to motion magnification, we do not explicitly estimate
motion, but rather exaggerate motion by amplifying temporal color
changes at fixed positions. We rely on the same differential approx-
imations that form the basis of optical flow algorithms [Lucas and
Kanade 1981; Horn and Schunck 1981].

Temporal processing has been used previously to extract invisible
signals [Poh et al. 2010] and to smooth motions [Fuchs et al. 2010].
For example, Poh et al. [2010] extract a heart rate from a video of a
face based on the temporal variation of the skin color, which is nor-
mally invisible to the human eye. They focus on extracting a single
number, whereas we use localized spatial pooling and bandpass fil-
tering to extract and reveal visually the signal corresponding to the
pulse. This primal domain analysis allows us to amplify and visu-
alize the pulse signal at each location on the face. This has impor-
tant potential monitoring and diagnostic applications to medicine,
where, for example, the asymmetry in facial blood flow can be a
symptom of arterial problems.

Fuchs et al. [2010] use per-pixel temporal filters to dampen tempo-
ral aliasing of motion in videos. They also discuss the high-pass
filtering of motion, but mostly for non-photorealistic effects and for
large motions (Figure 11 in their paper). In contrast, our method
strives to make imperceptible motions visible using a multiscale
approach. We analyze our method theoretically and show that it
applies only for small motions.

In this paper, we make several contributions. First, we demon-
strate that nearly invisible changes in a dynamic environment can be
revealed through Eulerian spatio-temporal processing of standard
monocular video sequences. Moreover, for a range of amplification
values that is suitable for various applications, explicit motion es-
timation is not required to amplify motion in natural videos. Our

approach is robust and runs in real time. Second, we provide an
analysis of the link between temporal filtering and spatial motion
and show that our method is best suited to small displacements and
lower spatial frequencies. Third, we present a single framework
that can be used to amplify both spatial motion and purely temporal
changes, e.g., the heart pulse, and can be adjusted to amplify par-
ticular temporal frequencies—a feature which is not supported by
Lagrangian methods. Finally, we analytically and empirically com-
pare Eulerian and Lagrangian motion magnification approaches un-
der different noisy conditions. To demonstrate our approach, we
present several examples where our method makes subtle variations
in a scene visible.

2 Space-time video processing

Our approach combines spatial and temporal processing to empha-
size subtle temporal changes in a video. The process is illustrated in
Figure 2. We first decompose the video sequence into different spa-
tial frequency bands. These bands might be magnified differently
because (a) they might exhibit different signal-to-noise ratios or (b)
they might contain spatial frequencies for which the linear approx-
imation used in our motion magnification does not hold (Sect. 3).
In the latter case, we reduce the amplification for these bands to
suppress artifacts. When the goal of spatial processing is simply to
increase temporal signal-to-noise ratio by pooling multiple pixels,
we spatially low-pass filter the frames of the video and downsample
them for computational efficiency. In the general case, however, we
compute a full Laplacian pyramid [Burt and Adelson 1983].

We then perform temporal processing on each spatial band. We
consider the time series corresponding to the value of a pixel in a
frequency band and apply a bandpass filter to extract the frequency
bands of interest. For example, we might select frequencies within
0.4-4Hz, corresponding to 24-240 beats per minute, if we wish to
magnify a pulse. If we are able to extract the pulse rate, we can use
a narrow band around that value. The temporal processing is uni-
form for all spatial levels, and for all pixels within each level. We
then multiply the extracted bandpassed signal by a magnification
factor ↵. This factor can be specified by the user, and may be atten-
uated automatically according to guidelines in Sect. 3.2. Possible
temporal filters are discussed in Sect. 4. Next, we add the magni-
fied signal to the original and collapse the spatial pyramid to obtain

Figure 2.1: Overview of the Eulerian Video Magnification method.

is an estimate of the vector s(t) containing the underlying source signals. To uncover the

independent sources, W must maximize the non-Gaussianity of each source. In practice, it-

erative methods are used to maximize or minimize a given cost function that measures non-

Gaussianity [PMP10, PMP11].

2.2.2 Eulerian Video Magnification

In contrast to the Independent Component Analysis model that focus on extracting a single num-

ber, the Eulerian Video Magnification uses localized spatial pooling and temporal filtering to ex-

tract and reveal visually the signal corresponding to the cardiac pulse. This allows for amplification

and visualization of the heart rate signal at each location on the face. This creates potential for

monitoring and diagnostic applications to medicine, i.e. the asymmetry in facial blood flow can

be a symptom of arterial problems.

Besides color amplification, the Eulerian Video Magnification method is also able to reveal

low-amplitude motion which may be hard or impossible for humans to see. Previous attempts

to unveil imperceptible motions in videos have been made, such as, [LTF+05] which follows

a Lagrangian perspective, as in fluid dynamics where the trajectory of particles is tracked over

time. By relying on accurate motion estimation and additional techniques to produce good quality

synthesis, such as, motion segmentation and image in-painting, the algorithm complexity and

computation is expensive and difficult.

On the contrary, the Eulerian Video Magnification method is inspired by the Eulerian per-

spective, where properties of a voxel of fluid, such as pressure and velocity, evolve over time.

The approach of this method to motion magnification is the exaggeration of motion by amplifying

temporal color changes at fixed positions, instead of, explicitly estimation of motion.

This method approach, illustrated in figure 2.1, combines spatial and temporal processing to

emphasize subtle temporal changes in a video. First, the video sequence is decomposed into

different spatial frequency bands. Because they may exhibit different signal-to-noise ratios, they

may be magnified differently. In the general case, the full Laplacian pyramid [BA83] may be

7
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Figure 2.2: Examples of temporal filters.

computed. Then, temporal processing is performed on each spatial band. The temporal processing

is uniform for all spatial bands, and for all pixels within each band. After that, the extracted

bandpass signal is magnified by a factor of α , which can be specified by the user, and may be

attenuated automatically. Finally, the magnified signal is added to the original and the spatial

pyramid collapsed to obtain the final output.

2.2.2.1 Spatial filtering

As mention before, the work of [WRS+12] computes the full Laplacian pyramid [BA83] as a

general case for spatial filtering. Each layer of the pyramid may be magnified differently because

it may exhibit different signal-to-noise ratios, or contain spatial frequencies for which the linear

approximation used in motion magnification does not hold [WRS+12, section 3].

Spatial filtering may also be used to significantly increases signal-to-noise ratio, as previously

mention on section 2.1 and demonstrated on the work of [VSN08] and [WRS+12]. Subtle signals,

such as, a person’s heart rate from a video of its face, may be enhanced this way. For this purpose

the work of [WRS+12] computes a layer of the Gaussian pyramid which may be obtained by

successively scaling down the image by calculating the Gaussian average for each pixel.

However, for the signal of interest to be revealed, the spatial filter applied must be large

enough. Section 5 of [WRS+12] provides an equation to estimate the size for a spatial filter

needed to reveal a signal at a certain noise power level:

S(λ ) = S(r) = σ
′2 = k

σ2

r2 (2.3)

where S(λ ) represents the signal over spatial frequencies, and since the wavelength, λ , cutoff

of a spatial filter is proportional to its radius, r, the signal may be represented as S(r). The noise

power, σ2, can be estimated using to the technique of [LFSK06]. Finally, because the filtered

noise power level, σ ′2, is inversely proportional to r2, it is possible to solve the equation for r,

where k is a constant that depends on the shape of the low pass filter.

2.2.2.2 Temporal filtering

Temporal filtering is used to extract the motions or signals to be amplified. Thus, the filter choice

is application dependent. For motion magnification, a broad bandpass filter, such as, the butter-

worth filter, is preferred. A narrow bandpass filter produces a more noise-free result for color

8
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Eulerian Video Magnification for Revealing Subtle Changes in the World

Hao-Yu Wu1 Michael Rubinstein1 Eugene Shih2 John Guttag1 Frédo Durand1 William Freeman1

1MIT CSAIL 2Quanta Research Cambridge, Inc.
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Figure 1: An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the
original video sequence (face). (b) The same four frames with the subject’s pulse signal amplified. (c) A vertical scan line from the input (top)
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal
is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video.

Abstract

Our goal is to reveal temporal variations in videos that are diffi-
cult or impossible to see with the naked eye and display them in
an indicative manner. Our method, which we call Eulerian Video
Magnification, takes a standard video sequence as input, and ap-
plies spatial decomposition, followed by temporal filtering to the
frames. The resulting signal is then amplified to reveal hidden in-
formation. Using our method, we are able to visualize the flow
of blood as it fills the face and also to amplify and reveal small
motions. Our technique can run in real time to show phenomena
occurring at temporal frequencies selected by the user.

CR Categories: I.4.7 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery;

Keywords: video-based rendering, spatio-temporal analysis, Eu-
lerian motion, motion magnification

Links: DL PDF WEB

1 Introduction

The human visual system has limited spatio-temporal sensitivity,
but many signals that fall below this capacity can be informative.

For example, human skin color varies slightly with blood circu-
lation. This variation, while invisible to the naked eye, can be ex-
ploited to extract pulse rate [Verkruysse et al. 2008; Poh et al. 2010;
Philips 2011]. Similarly, motion with low spatial amplitude, while
hard or impossible for humans to see, can be magnified to reveal
interesting mechanical behavior [Liu et al. 2005]. The success of
these tools motivates the development of new techniques to reveal
invisible signals in videos. In this paper, we show that a combina-
tion of spatial and temporal processing of videos can amplify subtle
variations that reveal important aspects of the world around us.

Our basic approach is to consider the time series of color values at
any spatial location (pixel) and amplify variation in a given tempo-
ral frequency band of interest. For example, in Figure 1 we auto-
matically select, and then amplify, a band of temporal frequencies
that includes plausible human heart rates. The amplification reveals
the variation of redness as blood flows through the face. For this
application, temporal filtering needs to be applied to lower spatial
frequencies (spatial pooling) to allow such a subtle input signal to
rise above the camera sensor and quantization noise.

Our temporal filtering approach not only amplifies color variation,
but can also reveal low-amplitude motion. For example, in the sup-
plemental video, we show that we can enhance the subtle motions
around the chest of a breathing baby. We provide a mathematical
analysis that explains how temporal filtering interplays with spatial
motion in videos. Our analysis relies on a linear approximation re-
lated to the brightness constancy assumption used in optical flow
formulations. We also derive the conditions under which this ap-
proximation holds. This leads to a multiscale approach to magnify
motion without feature tracking or motion estimation.

Previous attempts have been made to unveil imperceptible motions
in videos. [Liu et al. 2005] analyze and amplify subtle motions and
visualize deformations that would otherwise be invisible. [Wang
et al. 2006] propose using the Cartoon Animation Filter to create
perceptually appealing motion exaggeration. These approaches fol-
low a Lagrangian perspective, in reference to fluid dynamics where
the trajectory of particles is tracked over time. As such, they rely

Figure 2.3: Emphasis of face color changes using the Eulerian Video Magnification method.

amplification of blood flow. An ideal bandpass filter is used on [WRS+12] due to its sharp cutoff

frequencies. Alternatively, for a real-time implementation low-order IIR filters can be useful for

both: color amplification and motion magnification. These filters are illustrated on 2.2.

2.2.2.3 Emphasize color variations for human pulse

The extraction of a person’s cardiac pulse using the Eulerian Video Magnification method was

demonstrated in [WRS+12]. It was also presented that using the right configuration can help

extract the desired signal. There are four steps to take when processing a video using the Eulerian

Video Magnification method:

1. select a temporal bandpass filter;

2. select an amplification factor, α;

3. select a spatial frequency cutoff (specified by spatial wavelength, λc) beyond which an at-

tenuated version of α is used;

4. select the form of the attenuation for α —- either force α to zero for all λ < λc, or linearly

scale α down to zero.

For human pulse color variation, two temporal filters may be used, first selecting frequencies

within 0.4-4Hz, corresponding to 24-240 beats per minute (bpm), then a narrow band of 0.83-

1Hz (50-60 bpm) may be used, if the extraction of the pulse rate was successful.

To emphasize the color change as much as possible, a large amplification factor, α ≈ 100,

and spatial frequency cutoff, λc ≈ 1000, is applied. With an attenuation of α to zero for spatial

wavelengths below λc.

The resulting output can be seen in figure 2.3.
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a) Original and detrended RR series
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b) Time domain analysis
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Original 63.62 72.40 53.00 60.96 37.34 16.80 53.01 62.72 53.95 52.93 37.48 17.29
Detrended 55.54 72.10 52.07 41.42 36.98 15.98 49.15 62.51 54.42 41.90 37.21 16.92

c) Frequency domain analysis
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Fig. 2. The e↵ect of the detrending method on time and frequency domain analysis. a) Original RR series and fitted trends (above) and
detrended RR series (below) for four di↵erent data segments. The duration of each data segment is 200 seconds and they were obtained
from di↵erent subjects. b) The e↵ect of the detrending procedure on three time domain parameters (SDNN, RMSSD and pNN50). c)
PSD estimates for original (thin line) and detrended (bold line) RR series with Welch’s periodogram method (above) and by using a
16’th order AR model (below).

ponent. Each spectrum is however limited to 0.035 s2/Hz
to enable the comparison of the spectrums before and after
detrending. For Welch’s method the VLF components are
properly removed while the higher frequencies are not sig-
nificantly altered by the detrending. But when AR models
of relatively low orders are used, which is usually desirable
in HRV analysis in order to enable a distinct division of
the spectrum into VLF, LF and HF components, the e↵ect
of detrending is remarkable. In each original AR spectrum
the peak around 0.1 Hz is spuriously covered by the strong
VLF component. However in the AR spectrums obtained
after detrending the component near 0.1 Hz is more realis-
tic when compared to the spectrums obtained by Welch’s
method.

IV. Discussion

We have presented an advanced detrending method with
application to HRV analysis. The method is based on
smoothness priors formulation. The main advantage of the
method, compared to methods presented in [7], [5], is its
simplicity. The frequency response of the method is ad-
justed with a single parameter. This smoothing parame-
ter � should be selected in such a way that the spectral
components of interest are not significantly a↵ected by the
detrending. Another advantage of the presented method is
that the filtering e↵ect is attenuated in the beginning and
the end of the data and thus the distortion of data end

points is avoided.

The e↵ect of detrending on time and frequency domain
analysis of HRV was demonstrated. In time domain most
e↵ect is focused on SDNN, which describes the amount
of overall variance of RR series. Instead only little e↵ect
is focused on RMSSD and pNN50 which both describe the
di↵erences in successive RR intervals. In frequency domain
the low frequency trend components increase the power of
VLF component. Thus, when using relatively low order
AR models in spectrum estimation detrending is especially
recommended, since the strong VLF component distorts
other components, especially the LF component, of the
spectrum.

The presented detrending method can be applied to e.g.
respiratory sinus arrhythmia (RSA) quantification. RSA
component is separated from other frequency components
of HRV by adjusting the smoothing parameter � properly.
For other purposes of HRV analysis one should make sure
that the detrending does not lose any useful information
from the lower frequency components. Finally, it should
be emphasized that the presented detrending method is
not restricted to HRV analysis only, but can be applied as
well to other biomedical signals e.g. for detrending of EEG
signals in quantitative EEG analysis.

Figure 2.4: Original and detrended RR series.

2.2.3 Detrending

Detrending is a method of removing very large ultralow-frequency trends an input signal without

any magnitude distortion, acting as an high-pass filter.

The main advantage of the method presented on the work of [TRaK02], compared to methods

presented in [LOCS95] and [PB90], is its simplicity.

The method consists of separating the input signal, z, into two components, as z = zstat +ztrend ,

where zstat is the nearly stationary component, and ztrend is the low frequency aperiodic trend

component.

An estimation of the nearly stationary component, ẑstat , can be obtained using the equation

below. The detailed derivation of the equation can be found in [TRaK02].

ẑstat = (I− (I +λ
2DT

2 D2)
−1)z (2.4)

where I is the identity matrix, D2 is the discrete approximation of the second order, and λ is

the regularization parameter.

Figure 2.4 presents an example of what this method is able to achieve. The example, taken

from the work of [TRaK02], uses real RR series and the effect of the method on time and frequency

domain analysis of heart rate variability is demonstrated not to lose any useful information.

2.3 Heart rate estimation

In order to convert the extracted plethysmographic signal into the number of beats per minute (bpm),

further processing must be done. Below are highlighted two methods capable of achieving this

goal.

2.3.1 Power spectrum

Fourier transform is a mathematical transform capable of converting a function of time, f (t), into

a new function representing the frequency domain of the original function.

To calculate the power spectrum, the resulting function from the Fourier transform is then

multiplied by itself.

Since the values are captured from a video, sequence of frames, the function of time is actually

discrete, with a frequency rate equal to the video frame rate, FPS.

10
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The index, i, corresponding to the maximum of the power spectrum can then be converted into

a frequency value, F , using the equation:

F =
i∗FPS

2N
(2.5)

where N is the size of the signal extracted. F can then be multiplied by 60 to convert it to beats

per minute, and have an estimation of the heart rate from the extracted signal.

2.3.2 Pulse wave detection

In [NI10], it is presented an automated algorithm for fast pulse wave detection. The algorithm is

capable of obtaining an estimative of the heart rate from PPG signal, as an alternative to the power

spectrum described above. Moreover, it also introduces validation to the waveform detection by

verifying its shape and timing. Below is presented a simplified description of the algorithm. A

more detailed description can be found in [NI10].

1. Identification of possible peaks and foots of individual pulses

(a) Maximum (MAX)

The signal is divided into consecutive 200ms time intervals and for every segment the

absolute maximum is determined. Some of these maximums are rejected: if they fall

below a predetermined amplitude threshold; or if the distance between two maximums

is less than or equal to 200ms, then the lower maximum is rejected.

(b) Minimum (MIN)

The absolute minimum is determined between every two adjacent maximums. A mini-

mum is rejected, it is above a predetermined amplitude threshold. When a minimum is

rejected, the lower-amplitude maximum of the two maximum adjacent to the rejected

minimum is discarded too.

2. Examination and verification of the rising edges

(a) Validation of a single rising edge

If a rising edge is rejected, its maximum and minimum are rejected. A rising edge is

rejected, if its amplitude (AMPL = MAX−MIN) is lower than amplitude threshold; or

its duration is lower than a threshold that depends on the sampling rate; or its amplitude

does not increase smoothly.

(b) Estimation of the similarity of a rising edge to preceding and following rising edges

accepted as valid

Two rising edges are considered similar, if the amplitude of the lower-amplitude rising

edge is greater than 50% of the amplitude of the higher-amplitude rising edge; and if

the maximum of the lower-amplitude rising edge is between ±60% of the maximum

of the higher-amplitude rising edge; and if the minimum of the lower-amplitude rising

edge is between±60% of the minimum of the higher-amplitude rising edge; and if the

11
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duration of the shorter rising edge is greater then 33% of the duration of the longer

rising edge. The valid rising edges are then categorized according to its characteristics

for the following step. The categorization description is suppressed for brevity and can

be found at [NI10].

(c) Verification of the current rising edge

The rising edges categorized on the previous step are considered valid edges of a pulse

wave if they fulfill at least one of the decision rules presented on [NI10] and suppressed

for brevity.

The validation process described here is important for discarding signals which are not repre-

sentative of pulse waves. Providing a way of calculating the heart rate estimation only on valid

pulse signals.

2.4 Technologies

Below are short descriptions of two of the main technologies that will be used during this research

work.

2.4.1 Android SDK

Android SDK is the development kit for the Android platform. The Android platform is an open

source, Linux-based operating system, primarily designed for touchscreen mobile devices, such

as, smartphones.

Because of its open source code and permissive licensing, it allows the software to be freely

modified and distributed. This have allowed Android to be the software of choice for technology

companies who require a low-cost, customizable, and lightweight operating system for mobile

devices and others.

Android has also become the world’s most widely used smartphone platform with a worldwide

smartphone market share of 75% during the third quarter of 2012 [IDC13].

Android consists of a kernel based on Linux kernel with middleware, libraries and APIs writ-

ten in C. Applications, usually, run on an application framework which includes Java-compatible

libraries based on Apache Harmony, an open source, free Java implementation. Java bytecode is

then translated to run on the Dalvik virtual machine.

Porting existing Linux application or libraries to Android is difficult due to the lack of a native

X Window System and lack of support for GNU libraries. Support for simple C and SDL applica-

tion is possible, though, by the usage of JNI, a programming framework that allows Java code to

call and be called by libraries written in C/C++.

12
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2.4.2 OpenCV – Computer Vision Library

OpenCV is a library of programming functions mainly aimed at real-time image processing. To

support these, it also includes a statistical machine learning library. Moreover, it is a cross-platform

and open source library that is free to use and modify under the BSD license.

“OpenCV was built to provide a common infrastructure for computer vision appli-

cations and to accelerate the use of machine perception in the commercial prod-

ucts.” [Its13]

OpenCV is written in C/C++. There are binding for other languages, such as, Python, Java,

and even Android. However, Java and Android implementation is recent and lacks features and

stability.

2.5 Chapter summary

This chapter starts by describing the concept behind the extraction of cardiac pulse is possible

from a person’s face captured through a simple video or webcam.

It then presents several possible post-processing methods for to improve the extraction of the

actual pulse signal. These methods include:

• Independent Component Analysis, a method capable of uncovering independent signals

from a set of observations that are composed of linear mixtures of the underlying sources;

• Eulerian Video Magnification, a method inspired by the Eulerian perspective that exagger-

ates color variations by analyzing how each pixel value changes over time;

• Detrend, a method which removes small trends from an input signal without distorting its

amplitude.

Then algorithms for obtaining the actual beats per minutes of the heart rate from the signal are

described:

• Power spectrum, a set of equations capable of finding the frequency of a signal using the

Fourier transform;

• Pulse wave detection, an algorithm for detecting and validating rising edges from a pulse

signal.

Finally, important technologies for the work are described and explored:

• Android, a Linux-based operating system, primarily designed for touchscreen mobile de-

vices;

• OpenCV, a Computer Vision library of programming functions mainly aimed at real-time

image processing.
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Chapter 3

Problem description

This chapter provides a detailed description of the problem addressed, defining its scope and di-

viding it in smaller problems.

Section 3.1 describes the main objective of the work which consists of an implementation a

video magnification method based on the Eulerian perspective capable of running on a mobile

device.

Then, section 3.2 provides a description of a simple application of the Eulerian Video Magni-

fication method.

3.1 Android-based implementation of Eulerian Video Magnification

Fraunhofer Portugal is interested in testing the feasibility of implementing an Eulerian Video

Magnification-based method on a mobile device with the Android platform.

As stated on the previous chapters, the Eulerian Video Magnification method is capable of

magnifying small motion and amplifying color variation which may be invisible to the naked eye.

Examples of the method application include: estimation of a person’s heart rate from the variation

of its face’s color; respiratory rate from a person’s chest movements; and even, detect asymmetry

in facial blood flow, which may be a symptom of arterial problems.

The benefits of the Eulerian perspective is its low requirements for computational resources

and algorithm complexity, in comparison to other attempts which rely on accurate motion estima-

tion [LTF+05]. However, the existing limits of computational power on mobile devices may not

allow the Eulerian Video Magnification method to execute in real-time.

The main project’s goal is to develop a lightweight, real-time Eulerian Video Magnification-

based method capable of executing on a mobile device. Which will require performance optimiza-

tions and trade-offs will have to taken into account.
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3.2 Vital signs monitoring

As an objective to demonstrate that the Eulerian Video Magnification-based method developed is

working as expected, the creation of an Android application which estimates a person’s heart rate

in real-time using the device’s camera was pursued.

This goal requires comprehension of the photo-plethysmography concept, extraction of a fre-

quency from a signal, and recognition / validation of a signal as a cardiac pulse.

The application will then need to be tested in order to verify its estimations. The test will be

achieved by comparing results from a sphygmomanometer and other existing application [Tec13,

Phi13] which use different methods to estimate a person’s heart rate.

3.3 Chapter summary

In this chapter, a more detailed description of the problem and its scope is presented.

It describes the main goal and motivation for developing a lightweight, real-time Eulerian

Video Magnification-based method for the Android platform.

Moreover, the goal of creating an Android application for heart rate monitoring is explained.

Which serves for testing the developed method and demonstrating what can be achieved with the

implemented Eulerian Video Magnification method.
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