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Abstract

Eulerian Video Magnification is a recently presented method capable of revealing temporal varia-
tions in videos that are impossible to see with the naked eye. Using this method, it is possible to
visualize the flow of blood as it fills the face. From its result, a person’s heart rate is possible to be
extracted.

This research work is an internal project of Fraunhofer Portugal and its goal is to test the
feasibility of the implementation of the Eulerian Video Magnification method on smartphones by
developing an Android application for monitoring vital signs based on the Eulerian Video Magni-
fication method.

There has been some successful effort on the assessment of vital signs, such as, heart rate, and
breathing rate, in a contact-free way using a webcamera and even a smartphone. However, since
the Eulerian Video Magnification method was recently proposed, its implementation has not been
tested in smartphones yet.

The application will include features, such as, detection of a person’s cardiac pulse, dealing
with artifacts’ motion, and real-time display of the magnified blood flow. Then, the application
performance will be evaluated through tests with several individuals and the assessed heart rate
compared to the one detected by the Philips application, and to the measurement of an heart rate
monitor or a pulse oximeter.
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Chapter 1

Introduction

This chapter introduces this work, by first presenting its context, motivation, and project’s objec-
tives, on sections 1.1, 1.2, and 1.3, respectively.

Finally, section 1.4 describes the document outline.

1.1 Context

Eulerian Video Magnification is a method, recently presented at SSIGGRAPH' 2012, capable of
revealing temporal variations in videos that are impossible to see with the naked eye. Using this
method, it is possible to visualize the flow of blood as it fills the face [WRS'12]. Which pro-
vides enough information to assess the heart rate in a contact-free way using a camera [WRS" 12,
PMP10, PMP11].

The main field of this research work is image processing and computer vision, whose main
purpose is to translate dimensional data from the real world in the form of images into numerical
or symbolical information.

Other fields include medical applications, software development for mobile devices, digital
signal processing.

This research work is an internal project of Fraunhofer Portugal® supervised by Luis Rosado.
Fraunhofer Portugal a is non-profit private association founded by Fraunhofer-Gesellschaft® [Por13]

and

“aims on the creation of scientific knowledge capable of generating added value to
its clients and partners, exploring technology innovations oriented towards economic
growth, the social well-being and the improvement of the quality of life of its end-

users.” [Porl3]

Thttp:/ /www.siggraph.org/
http:/ /www.fraunhofer.pt /
3http:/ /www.fraunhofer.de/en/about-fraunhofer/
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1.2 Motivation

Due to being recently proposed, the Eulerian Video Magnification method implementation has not
been tested in smartphones yet.

There has been some successful effort on the assessment of vital signs, such as, heart rate, and
breathing rate, in a contact-free way using a webcamera [WRS*12, PMP10, PMP11], and even a
smartphone [Tec13, Phil3].

Other similar products, which require specialist hardware and are thus expensive, include laser
Doppler [UT93], microwave Doppler radar [Gre97], and thermal imaging [GSMPO7].

Since it is a cheaper method of assessing vital signs in a contact-free way than the above
products, this research work has potential for advancing fields, such as, telemedicine, personal
health-care, and ambient assisting living.

Despite the existence of very similar products by Philips [Phil3] and ViTrox Technologies [Tec13]
to the one proposed on this research work, none of these implements the Eulerian Video Magni-
fication method. Moreover, the application to be developed during this research work will have

additional features described on the next section 1.3.

1.3 Objectives

This research work goal is to test the feasibility of the implementation of the Eulerian Video
Magnification method on smartphones by developing an Android application for monitoring vital
signs based on the Eulerian Video Magnification method.

This application should include the following features:

e heart rate detection and assessment based on the Eulerian Video Magnification method;

e display real-time changes, such as, the magnified blood flow, obtained from the Eulerian

Video Magnification method;

e deal with artifacts’ motion, due to, person and/or smartphone movement.

It should be noted that a straightforward implementation of the Eulerian Video Magnification
method is not possible, due to various reasons. First, the Eulerian Video Magnification method
provides motion magnification along with color magnification which will introduce several prob-
lems with artifacts’ motion. Second, the requirement of implementing a real-time smartphone
application will create performance issues which will have to be addressed and trade-offs will
have to be considered.

The application performance should then be evaluated through tests with several individuals
and the assessed heart rate compared to the ones detected by another application [Tec13, Phil3],

and to the measurement of an electronic sphygmomanometer.
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1.4 Outline

The rest of the document is structured as follows:

Chapter 2 introduces the concepts necessary to understand the presented problem. In addition, it

presents the existing related work, and a description of the technologies to be used.
Chapter 3 ...

Chapter ?? presents the approach taken to solve the problem. Moreover, it introduces the testing

and evaluation methodologies.
Chapter 4 ...
Chapter 5 ...

Chapter 6 ...
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Chapter 2

State of the art

This chapter presents several studies regarding the heart rate estimation from a person’s face cap-
tured through a simple webcam.

Section 2.1 describe the concept that explains how the cardiac pulse is detected from a person’s
face in a remote, contact-free way.

Post-processing methods, which may be applied to the retrieved signal, are detailed on sec-
tion 2.2.

In order to estimate the heart rate, a couple of techniques are also detailed on section 2.3.

Finally, section 2.4 reviews the main technologies and tools used throughout this work.

2.1 Photo-plethysmography

Photo-plethysmography (PPG) is the concept of measuring volumetric changes of an organ opti-
cally. Its most established use is in pulse oximeters.
PPG is based on the principle that blood absorbs more light than surrounding tissue thus vari-

ations on blood volume affect light reflectance [VSNOS].

The use of dedicated light sources and infra-red wavelengths, and contact probes has been the
norm [UT93, Gre97, GSMPO7]. However, recently, remote, non-contact PPG imaging has been
explored.

The method used on the article [VSNO8] captures the pixel values (red, green, and blue chan-
nels) of the facial area of a previously recorded video where volunteers were asked to minimize
movements. The pixel values within a region of interest (ROI) was then averaged for each frame.
This spatial averaging was found to significantly increase signal-to-noise ratio. The heart rate
estimation was then calculated by applying Fast Fourier transforms and the power spectrum as

explained on section 2.3.1.
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The authors of [VSNO8] demonstrate that the fact that the green channel features a stronger
heart rate signal as compared to the red and blue channels, is a strong evidence that the signal is

due to variations in blood volume because (oxy-) hemoglobin absorbs green light.

2.2 Signal post-processing

After obtaining the raw pixel values (red, green, and blue channels), a conjunction of the following
methods may be used to extract and improve the reflected plethysmography signal. However, each

method introduces complexity and expensive computation.

2.2.1 Independent Component Analysis

Independent Component Analysis is a special case of blind source separation and is a relatively
new technique for uncovering independent signals from a set of observations that are composed of

linear mixtures of the underlying sources [Com94].

In this case, the underlying source signal of interest is the cardiac pulse that propagates
throughout the body, which modify the path length of the incident ambient light due to volu-
metric changes in the facial blood vessels during the cardiac cycle, such that subsequent changes

in amount of reflected light indicate the timing of cardiovascular events.

By recording a video of the facial region, the red, green, and blue (RGB) color sensors pick up
a mixture of the reflected plethysmographic signal along with other sources of fluctuations in light
due to artifacts. Each color sensor records a mixture of the original source signals with slightly
different weights. These observed signals from the red, green and blue color sensors are denoted
by x;1(¢), x2(¢) and x3(¢) respectively, which are amplitudes of the recorded signals at time point
t. In conventional Independent Component Analysis model the number of recoverable sources
cannot exceed the number of observations, thus three underlying source signals were assumed,
represented by s (), s2(¢) and s3(7). The Independent Component Analysis model assumes that
the observed signals are linear mixtures of the sources, i.e. x;(t) = 23:1 a;jsj(t) foreachi=1,2,3.

This can be represented compactly by the mixing equation

x(t) = As(t) (2.1)

where the column vectors x(¢) = [x1 (¢),x2(¢),x3(¢)]7, s(t) = [s1(¢),52(¢),s3(t)]" and the square
3 x 3 matrix A contains the mixture coefficients a;;. The aim of Independent Component Analysis
model is to find a separating or demixing matrix W that is an approximation of the inverse of the

original mixing matrix A whose output

$(t) =Wx(t) (2.2)
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Figure 2.1: Overview of the Eulerian Video Magnification method.

is an estimate of the vector s(z) containing the underlying source signals. To uncover the
independent sources, W must maximize the non-Gaussianity of each source. In practice, it-
erative methods are used to maximize or minimize a given cost function that measures non-
Gaussianity [PMP10, PMP11].

2.2.2 Eulerian Video Magnification

In contrast to the Independent Component Analysis model that focus on extracting a single num-
ber, the Eulerian Video Magnification uses localized spatial pooling and temporal filtering to ex-
tract and reveal visually the signal corresponding to the cardiac pulse. This allows for amplification
and visualization of the heart rate signal at each location on the face. This creates potential for
monitoring and diagnostic applications to medicine, i.e. the asymmetry in facial blood flow can
be a symptom of arterial problems.

Besides color amplification, the Eulerian Video Magnification method is also able to reveal
low-amplitude motion which may be hard or impossible for humans to see. Previous attempts
to unveil imperceptible motions in videos have been made, such as, [LTF*05] which follows
a Lagrangian perspective, as in fluid dynamics where the trajectory of particles is tracked over
time. By relying on accurate motion estimation and additional techniques to produce good quality
synthesis, such as, motion segmentation and image in-painting, the algorithm complexity and
computation is expensive and difficult.

On the contrary, the Eulerian Video Magnification method is inspired by the Eulerian per-
spective, where properties of a voxel of fluid, such as pressure and velocity, evolve over time.
The approach of this method to motion magnification is the exaggeration of motion by amplifying
temporal color changes at fixed positions, instead of, explicitly estimation of motion.

This method approach, illustrated in figure 2.1, combines spatial and temporal processing to
emphasize subtle temporal changes in a video. First, the video sequence is decomposed into
different spatial frequency bands. Because they may exhibit different signal-to-noise ratios, they

may be magnified differently. In the general case, the full Laplacian pyramid [BA83] may be
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Figure 2.2: Examples of temporal filters.

computed. Then, temporal processing is performed on each spatial band. The temporal processing
is uniform for all spatial bands, and for all pixels within each band. After that, the extracted
bandpass signal is magnified by a factor of ¢, which can be specified by the user, and may be
attenuated automatically. Finally, the magnified signal is added to the original and the spatial

pyramid collapsed to obtain the final output.

2.2.2.1 Spatial filtering

As mention before, the work of [WRS™12] computes the full Laplacian pyramid [BA83] as a
general case for spatial filtering. Each layer of the pyramid may be magnified differently because
it may exhibit different signal-to-noise ratios, or contain spatial frequencies for which the linear
approximation used in motion magnification does not hold [WRS™ 12, section 3].

Spatial filtering may also be used to significantly increases signal-to-noise ratio, as previously
mention on section 2.1 and demonstrated on the work of [VSNO08] and [WRS™12]. Subtle signals,
such as, a person’s heart rate from a video of its face, may be enhanced this way. For this purpose
the work of [WRS"12] computes a layer of the Gaussian pyramid which may be obtained by
successively scaling down the image by calculating the Gaussian average for each pixel.

However, for the signal of interest to be revealed, the spatial filter applied must be large
enough. Section 5 of [WRS"12] provides an equation to estimate the size for a spatial filter

needed to reveal a signal at a certain noise power level:

S(A)=S8(r)=0"= k— (2.3)

where S(A) represents the signal over spatial frequencies, and since the wavelength, A, cutoff
of a spatial filter is proportional to its radius, r, the signal may be represented as S(r). The noise
power, 62, can be estimated using to the technique of [LFSKO06]. Finally, because the filtered
noise power level, 6’2, is inversely proportional to 72, it is possible to solve the equation for r,

where k is a constant that depends on the shape of the low pass filter.

2.2.2.2 Temporal filtering

Temporal filtering is used to extract the motions or signals to be amplified. Thus, the filter choice
is application dependent. For motion magnification, a broad bandpass filter, such as, the butter-

worth filter, is preferred. A narrow bandpass filter produces a more noise-free result for color
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Figure 2.3: Emphasis of face color changes using the Eulerian Video Magnification method.

amplification of blood flow. An ideal bandpass filter is used on [WRS™12] due to its sharp cutoff
frequencies. Alternatively, for a real-time implementation low-order IIR filters can be useful for

both: color amplification and motion magnification. These filters are illustrated on 2.2.

2.2.2.3 Emphasize color variations for human pulse

The extraction of a person’s cardiac pulse using the Eulerian Video Magnification method was
demonstrated in [WRST12]. It was also presented that using the right configuration can help
extract the desired signal. There are four steps to take when processing a video using the Eulerian

Video Magnification method:

1. select a temporal bandpass filter;
2. select an amplification factor, «;

3. select a spatial frequency cutoff (specified by spatial wavelength, A.) beyond which an at-

tenuated version of « is used;

4. select the form of the attenuation for oo —- either force & to zero for all A < A, or linearly

scale oo down to zero.

For human pulse color variation, two temporal filters may be used, first selecting frequencies
within 0.4-4Hz, corresponding to 24-240 beats per minute (bpm), then a narrow band of 0.83-
1Hz (50-60 bpm) may be used, if the extraction of the pulse rate was successful.

To emphasize the color change as much as possible, a large amplification factor, a ~ 100,
and spatial frequency cutoff, A. ~ 1000, is applied. With an attenuation of o to zero for spatial
wavelengths below A..

The resulting output can be seen in figure 2.3.
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Figure 2.4: Original and detrended RR series.

2.2.3 Detrending

Detrending is a method of removing very large ultralow-frequency trends an input signal without
any magnitude distortion, acting as an high-pass filter.

The main advantage of the method presented on the work of [TRaK02], compared to methods
presented in [LOCS95] and [PB90], is its simplicity.

The method consists of separating the input signal, z, into two components, as z = Zgar + Ztrend>
where zy, is the nearly stationary component, and z;..,qs is the low frequency aperiodic trend
component.

An estimation of the nearly stationary component, Zy,, can be obtained using the equation

below. The detailed derivation of the equation can be found in [TRaK02].

2w = (I — (I+2A*DIDy) 1)z (2.4)

where I is the identity matrix, D; is the discrete approximation of the second order, and A is
the regularization parameter.

Figure 2.4 presents an example of what this method is able to achieve. The example, taken
from the work of [TRaK02], uses real RR series and the effect of the method on time and frequency

domain analysis of heart rate variability is demonstrated not to lose any useful information.

2.3 Heart rate estimation

In order to convert the extracted plethysmographic signal into the number of beats per minute (bpm),
further processing must be done. Below are highlighted two methods capable of achieving this

goal.

2.3.1 Power spectrum

Fourier transform is a mathematical transform capable of converting a function of time, f(z), into
a new function representing the frequency domain of the original function.

To calculate the power spectrum, the resulting function from the Fourier transform is then
multiplied by itself.

Since the values are captured from a video, sequence of frames, the function of time is actually

discrete, with a frequency rate equal to the video frame rate, F'PS.

10
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The index, i, corresponding to the maximum of the power spectrum can then be converted into
a frequency value, F', using the equation:
i*FPS
F = 2.5
N 2.5)

where N is the size of the signal extracted. F' can then be multiplied by 60 to convert it to beats

per minute, and have an estimation of the heart rate from the extracted signal.

2.3.2 Pulse wave detection

In [NI10], it is presented an automated algorithm for fast pulse wave detection. The algorithm is
capable of obtaining an estimative of the heart rate from PPG signal, as an alternative to the power
spectrum described above. Moreover, it also introduces validation to the waveform detection by
verifying its shape and timing. Below is presented a simplified description of the algorithm. A

more detailed description can be found in [NI10].

1. Identification of possible peaks and foots of individual pulses

(a) Maximum (MAX)
The signal is divided into consecutive 200ms time intervals and for every segment the
absolute maximum is determined. Some of these maximums are rejected: if they fall
below a predetermined amplitude threshold; or if the distance between two maximums
is less than or equal to 200ms, then the lower maximum is rejected.

(b) Minimum (MIN)
The absolute minimum is determined between every two adjacent maximums. A mini-
mum is rejected, it is above a predetermined amplitude threshold. When a minimum is
rejected, the lower-amplitude maximum of the two maximum adjacent to the rejected

minimum is discarded too.
2. Examination and verification of the rising edges

(a) Validation of a single rising edge
If a rising edge is rejected, its maximum and minimum are rejected. A rising edge is
rejected, if its amplitude (AMPL = MAX — MIN) is lower than amplitude threshold; or
its duration is lower than a threshold that depends on the sampling rate; or its amplitude

does not increase smoothly.

(b) Estimation of the similarity of a rising edge to preceding and following rising edges
accepted as valid
Two rising edges are considered similar, if the amplitude of the lower-amplitude rising
edge is greater than 50% of the amplitude of the higher-amplitude rising edge; and if
the maximum of the lower-amplitude rising edge is between +60% of the maximum
of the higher-amplitude rising edge; and if the minimum of the lower-amplitude rising

edge is between +60% of the minimum of the higher-amplitude rising edge; and if the

11
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duration of the shorter rising edge is greater then 33% of the duration of the longer
rising edge. The valid rising edges are then categorized according to its characteristics
for the following step. The categorization description is suppressed for brevity and can
be found at [NI10].

(c) Verification of the current rising edge
The rising edges categorized on the previous step are considered valid edges of a pulse
wave if they fulfill at least one of the decision rules presented on [NI10] and suppressed

for brevity.

The validation process described here is important for discarding signals which are not repre-
sentative of pulse waves. Providing a way of calculating the heart rate estimation only on valid

pulse signals.

2.4 Technologies

Below are short descriptions of two of the main technologies that will be used during this research

work.

24.1 Android SDK

Android SDK is the development kit for the Android platform. The Android platform is an open
source, Linux-based operating system, primarily designed for touchscreen mobile devices, such
as, smartphones.

Because of its open source code and permissive licensing, it allows the software to be freely
modified and distributed. This have allowed Android to be the software of choice for technology
companies who require a low-cost, customizable, and lightweight operating system for mobile

devices and others.

Android has also become the world’s most widely used smartphone platform with a worldwide
smartphone market share of 75% during the third quarter of 2012 [IDC13].

Android consists of a kernel based on Linux kernel with middleware, libraries and APIs writ-
ten in C. Applications, usually, run on an application framework which includes Java-compatible
libraries based on Apache Harmony, an open source, free Java implementation. Java bytecode is
then translated to run on the Dalvik virtual machine.

Porting existing Linux application or libraries to Android is difficult due to the lack of a native
X Window System and lack of support for GNU libraries. Support for simple C and SDL applica-
tion is possible, though, by the usage of JNI, a programming framework that allows Java code to

call and be called by libraries written in C/C++.

12
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2.4.2 OpenCV - Computer Vision Library

OpenCYV is a library of programming functions mainly aimed at real-time image processing. To
support these, it also includes a statistical machine learning library. Moreover, it is a cross-platform

and open source library that is free to use and modify under the BSD license.

“OpenCV was built to provide a common infrastructure for computer vision appli-
cations and to accelerate the use of machine perception in the commercial prod-
ucts.” [Its13]

OpenCV is written in C/C++. There are binding for other languages, such as, Python, Java,
and even Android. However, Java and Android implementation is recent and lacks features and

stability.

2.5 Chapter summary

This chapter starts by describing the concept behind the extraction of cardiac pulse is possible
from a person’s face captured through a simple video or webcam.
It then presents several possible post-processing methods for to improve the extraction of the

actual pulse signal. These methods include:

o Independent Component Analysis, a method capable of uncovering independent signals

from a set of observations that are composed of linear mixtures of the underlying sources;

o FEulerian Video Magnification, a method inspired by the Eulerian perspective that exagger-

ates color variations by analyzing how each pixel value changes over time;

e Detrend, a method which removes small trends from an input signal without distorting its

amplitude.

Then algorithms for obtaining the actual beats per minutes of the heart rate from the signal are

described:

e Power spectrum, a set of equations capable of finding the frequency of a signal using the

Fourier transform;

e Pulse wave detection, an algorithm for detecting and validating rising edges from a pulse

signal.
Finally, important technologies for the work are described and explored:

e Android, a Linux-based operating system, primarily designed for touchscreen mobile de-

vices;

e OpenCV, a Computer Vision library of programming functions mainly aimed at real-time

image processing.

13
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Chapter 3

Problem description

This chapter provides a detailed description of the problem addressed, defining its scope and di-

viding it in smaller problems.

Section 3.1 describes the main objective of the work which consists of an implementation a
video magnification method based on the Eulerian perspective capable of running on a mobile

device.

Then, section 3.2 provides a description of a simple application of the Eulerian Video Magni-

fication method.

3.1 Android-based implementation of Eulerian Video Magnification

Fraunhofer Portugal is interested in testing the feasibility of implementing an Eulerian Video

Magnification-based method on a mobile device with the Android platform.

As stated on the previous chapters, the Eulerian Video Magnification method is capable of
magnifying small motion and amplifying color variation which may be invisible to the naked eye.
Examples of the method application include: estimation of a person’s heart rate from the variation
of its face’s color; respiratory rate from a person’s chest movements; and even, detect asymmetry

in facial blood flow, which may be a symptom of arterial problems.

The benefits of the Eulerian perspective is its low requirements for computational resources
and algorithm complexity, in comparison to other attempts which rely on accurate motion estima-
tion [LTF"05]. However, the existing limits of computational power on mobile devices may not
allow the Eulerian Video Magnification method to execute in real-time.

The main project’s goal is to develop a lightweight, real-time Eulerian Video Magnification-
based method capable of executing on a mobile device. Which will require performance optimiza-

tions and trade-offs will have to taken into account.

15
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3.2 Vital signs monitoring

As an objective to demonstrate that the Eulerian Video Magnification-based method developed is
working as expected, the creation of an Android application which estimates a person’s heart rate
in real-time using the device’s camera was pursued.

This goal requires comprehension of the photo-plethysmography concept, extraction of a fre-
quency from a signal, and recognition / validation of a signal as a cardiac pulse.

The application will then need to be tested in order to verify its estimations. The test will be
achieved by comparing results from a sphygmomanometer and other existing application [Tec13,

Phil3] which use different methods to estimate a person’s heart rate.

3.3 Chapter summary

In this chapter, a more detailed description of the problem and its scope is presented.

It describes the main goal and motivation for developing a lightweight, real-time Eulerian
Video Magnification-based method for the Android platform.

Moreover, the goal of creating an Android application for heart rate monitoring is explained.
Which serves for testing the developed method and demonstrating what can be achieved with the

implemented Eulerian Video Magnification method.

16



Chapter 4

Implementation details

This chapter ...
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